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Abstract—Research in machine learning on Domain Adap-

tation has led to numerous methods for re-purposing high-

performance pre-trained models for novel tasks, e.g., via fine-

tuning a model with out-of-domain training data. When model

weights are unavailable or otherwise fixed, there are fewer

options available for exploiting its predictive power. In this paper

we investigate whether the predictions of ensembles of fixed,

pre-trained, out-of-domain image classification models can be

used to improve the performance of an in-domain classifier, or

replace it outright with comparable performance. Our approach

involves computing the conditional probabilities from the confu-

sion matrixes of out-of-domain predictions for in-domain training

samples, then combining this information with prior probabilities

and classification confidence using probability-ordered logical

abduction, Etcetera Abduction, to select the most likely label for

an in-domain test sample. We evaluate this approach using four

image classification models in highly disparate domains. Results

indicate that this method may be well-suited to applications where

insufficient training data is available to train an accurate model

on a novel task.

Index Terms—I.2.6.g Machine learning I.2.3.d Inference en-

gines I.2.4 Knowledge Representation Formalisms and Methods

I. INTRODUCTION

The wide availability of large annotated datasets and pre-
trained models has been instrumental to the rapid advancement
of contemporary machine learning using deep neural networks.
However, the commercial industry that has grown around these
technologies is increasingly protective of both the datasets
used to train their models and the resulting model weights,
and sometimes offer only a paid API service to use their
top-performing models. This shift toward closed and opaque
models creates new hurdles for traditional methods of domain-
adaptation, such as fine-tuning, which requires pre-trained
model weights in order to tune a model to a novel, out-of-
domain task. This raises the question, How best can we exploit
the power of pre-trained models for out-of-domain tasks in
application contexts where these models are both fixed and
opaque?

In this paper, we investigate this question for the task of
image classification, and evaluate a novel approach to the re-
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purposing of ensembles of pre-trained image classifiers for
out-of-domain tasks. In this work, we consider the case where
several pre-trained classifiers for various tasks are available for
inference, but their training data and model weights are other-
wise opaque. Our approach is to use any available training data
for the novel image classification task to determine how each
pre-trained model responds to out-of-domain input, computing
confusion matrices between out-of-domain predictions and the
actual labels in the available training data for the novel task.
When assigning labels to test data, these confusion matrices
are then used to translate the combined predictions of the
pre-trained models into the most likely labels of the novel
task. Our method uses a logic-based approach called Etcetera
Abduction, a probability-ordered first-order logic abductive
reasoning algorithm, which manages the combinatorial search
for the most likely label given the evidence from classifiers
from disparate domains.

After explaining our method, we describe a set of experi-
ments involving four image classifiers trained using standard
(available) datasets. We look specifically at differences be-
tween test accuracy when using a classifier trained on the base
model’s available training data, when incorporating evidence
from ensembles of out-of-domain classifiers, and when using
only these out-of-domain predictions to select a label for the
novel task. Results indicate that our method may be well-suited
to applications where insufficient training data is available to
train an accurate model on a novel task, or where such a model
for the novel task is unavailable.

II. RELATED WORK

Adapting pre-trained models to novel domains is a standard
practice in contemporary machine learning using deep neural
networks. Typically, a model is first pre-trained on a large out-
of-domain dataset, then trained using the available in-domain
data for the novel task. In this second step, training for the
novel task can be done by ”fine-tuning”, where all model
weights are updated via gradient descent, or alternatively by
linear probing, where only the output layers of the model are
tuned [1] [2] [3].

Our approach, where ensembles of out-of-domain pre-
trained models are used without fine-tuning or linear probing,
is most similar to the work of Li et al. [4]. In their work, the



output layer of each model in the ensemble is used as an input
to an additional network that learns the translation between
label spaces, while a specialized dispatcher layer weights
the contribution of each ensemble model conditioned on an
embedding of the input sample. Our approach differs from this
previous work in that we do not train an additional network
to aggregate the predictions of ensemble models. Instead, we
compute the pairwise confusion between the predictions of
pre-trained models and the training data of the novel task, and
aggregate ensemble evidence using probabilistic reasoning.
The practical impact of this difference is that, in our approach,
the composition of the ensemble can be changed without
requiring any additional retraining of an aggregating model.

III. ETCETERA ABDUCTION

Logical abduction, distinct from deductive or inductive
reasoning, is a reasoning method that answers the question:
Given a knowledge base of axioms and a set of input ob-
servations, what are the sets of assumptions would logically
entail the observations, if they were true? Beginning with
the work of Hobbs et al. [5], logical abduction has been
employed in the fields of natural language understanding and
commonsense reasoning as a means of identifying higher-level
interpretations of sentences and other forms of discourse. In
various implementations, logical abduction is conceived as a
form of combinatorial search among the possible explanations
for each observation, identified by back-chaining on knowl-
edge base axioms to a defined depth d, unifying assumptions
where possible, and ranking solutions according to various
criteria. A popular implementation of logical abduction is
Etcetera Abduction [6], which provides a probabilistic foun-
dation for encoding defeasible knowledge base axioms and
ranking possible solutions. Here, both the prior and conditional
probabilities of and among assumptions are encoded as so-
called etcetera literals, unique to a single knowledge base
axiom, and used to (naively) compute the joint probability
of a given set of entailing assumptions. To manage the size
of the combinatorial search, Incremental Etcetera Abduction
[7] adds a sliding context window w for input observations
and a beam b of the most probable partial solutions that are
incrementally expanded in the search for the most probable
solution.

Although logical abduction is more typically associated
with commonsense reasoning tasks involving brittle knowl-
edge bases of hand-crafted axioms, the provisions of Etcetera
Abduction for managing combinatorial search make it a use-
ful tool in various other reasoning tasks where prior and
conditional probabilities can be estimated from data. In our
previous work [8], we applied Etcetera Abduction to the
problem of assigning labels to multiple objects in images
from the COCO dataset [9] and to multiple player actions
in videos in the Volleyball dataset [10]. In these two tasks,
we first estimated the prior and conditional probabilities for
label assignments from the available training data, e.g., the
conditional probability that an object is a “carrot” given that
another object in the image has the label “carrot”. Each of

these estimates were (automatically) encoded as knowledge
base axioms, with the probabilities reified as etcetera literals in
first-order definite clauses. Then we applied a trained classifier
to each entity in a given input context (image or video),
and encoded the top-four most-confident class predictions
for each entity as a separate input observation. Given these
observations and the knowledge base of probability axioms,
Etcetera Abduction was used to find the most probable set
of assumptions (class label assignments for each entity), that
would logically entail the observations. By incorporating co-
occurrence statistics into the search for the most probable
combination of label assignments, we demonstrated significant
gains in accuracy over simply selecting the most confident
class.

The results seen in this previous application of Etcetera
Abduction in computer vision tasks sparked a new question:
Could Etcetera Abduction also be used to aggregate predic-
tions from out-of-domain classifiers and improve accuracy in
novel image classification tasks?

IV. METHOD

To investigate the application of Etcetera Abduction in
aggregating evidence from out-of-domain classifiers, we con-
ducted four experiments involving four different classifiers,
where each experiment used one classifier as the base and the
remaining three as out-of-domain ensemble models, using the
following method.

A. Base and Ensemble Models
We began by selecting four standard image classification

datasets for use in our experiments, each with unique charac-
teristics with respect to size, scope of labels, and number of
classes, as follows:

CIFAR-100: A large dataset with 100 broad-coverage
classes, e.g., mouse, bicycle, telephone [11]

Flowers-102: A small dataset with 102 narrow-coverage
classes, e.g., fire lily, corn poppy, siam tulip [12]

Food-101: A large dataset with 101 narrow-coverage
classes, e.g., beignets, lasagna, waffles [13]

Fashion-MNIST: A large dataset with 10 narrow-coverage
classes, e.g., trouser, sneaker, ankle boot [14]

Using the standard training data split for each dataset, we
trained our own image classification model using the Torch
machine learning library. As a model architecture, we selected
ResNet-18 in each case, consisting of 17 convolutional layers,
a fully-connected layer, and an additional softmax layer to
perform the classification task. All models were trained with
10 epochs, using cross entropy loss as the criterion, and an
SGD optimizer with learning rate of 0.001 and momentum of
0.9.

Table I describes each dataset and the accuracy of the
resulting model on its own test data. As expected, the observed
accuracy of each model greatly depends on the size of the
training data split and the number of classes. While none of
these classifiers achieves the performance of top-performing
models seen in previous research using these datasets, their



accuracy is representative of a generic application of the
ResNet-18 architecture and training regime.

TABLE I
FOUR TRAINED RESNET-18 CLASSIFIERS USED IN THIS RESEARCH.

Dataset Classes Training Test Test accuracy

CIFAR-100 [11] 100 50000 10000 0.3921
Flowers-102 [12] 102 1020 6149 0.1057

Food-101 [13] 101 75750 25250 0.3569
Fashion-MNIST [14] 10 60000 10000 0.9118

B. Knowledge Base Generation

Our experimental design for each of the four tasks was to
select one of datasets as the base domain, and use the three
remaining classifiers as an out-of-domain ensemble, evaluating
the degree to which the ensemble could augment or replace
the accuracy of the base classifier for the dataset using its test
data split. In each task, we generated a distinct knowledge base
of axioms (first-order definite clauses) to encode prior and
conditional probabilities relevant to the interpretation of en-
semble output. In each case, these probabilities were computed
empirically from only the available training data of the base
domain. In this section, we describe how this knowledge was
generated as exemplified by using the Flowers-102 dataset as
the base domain with an out-of-domain ensemble of CIFAR-
100, Food-101, and Fashion-MNIST classifiers.

We computed prior probabilities based on the number of
examples for each class in the training data split. In the
Flowers-102 dataset, and the others in our study as well, the
training data is distributed equally among the class labels
(1/102 = 0.0098). With these numbers, we generated prior

Fig. 1. CIFAR-100 predictions for CIFAR-100 test data.

probabilities for base domain class labels, as in this example:

(8s) (Etcpinkprimrose(0.0098, s) !
Class(s, F lowers, “pink primrose”)) (1)

Next, we computed the conditional probabilities of base
domain class labels given the predictions of each model in the
ensemble. This was done by generating a confusion matrix
for each out-of-domain classifier when applied to the training
data samples in the base domain. Figure 1 shows a traditional
confusion matrix as it is commonly seen, in this case showing
the predictions of our trained CIFAR-100 ResNet18 model
on the test data split of the CIFAR-100 dataset. Note that
this confusion matrix exhibits the distinctive diagonal line
that is indicative of a well-trained, accurate model. In our
approach, however, we instead generate a confusion matrix
for the ensemble classifier when applied to the training data
of the base domain. For example, Figure 2 shows the confusion
matrix for predictions of the CIFAR-100 ResNet18 model
when presented with images in the Flowers-102 training data
split. This figure exhibits distinct vertical bands, indicating that
our CIFAR-100 ResNet18 model is biased toward selecting
among only a handful of classes when given an image from
the Flowers-102 training data. For example, the second dark
band around the “predicted” label number 40 indicates that
our model will often mistake a given flower for a “keyboard”.

We treat the values in these confusion matrixes as condi-
tional probabilities, e.g., the probability of predicting a given
CIFAR-100 label given that the actual label is a given Flowers-
102 label. These probabilities are encoded as knowledge base
axioms as in the following example:

(8s) Class(s, F lowers, “pink primrose”) ^
Etckeyboard|pinkprimrose(0.2, s) !

Class(s, Cifar, “keyboard”)) (2)

Fig. 2. CIFAR-100 predictions for Flowers-102 training data.



With one axiom generated for each pairwise combination of
base domain label and each out-of-domain label for each en-
semble classifier, the number of generated axioms in this work
is quite large, e.g. 21,624 generated axioms for the Flowers-
102 task. To prevent Etcetera Abduction from considering
solutions that have zero joint probability, we remove axioms
that encode a zero conditional probability. For the Flowers-
102 task, the remaining knowledge base consists of only 1,290
generated axioms.

C. Base and Ensemble Predictions
Etcetera Abduction is used to find the most probable base

domain label for a given test sample, given the observed output
of the ensemble classifiers. In our experiments, we evaluate
the case where the predictions of a base-domain classifier
(trained on the available training data) is included as well,
alongside ensemble classifiers. When included, the aim is
to see whether the predictions of the base classifier can be
improved by including evidence from the ensemble classifiers.
When excluded, the aim is to see how well the ensemble can
replace the base classifier if it were not available.

In each task, we present each sample in the test data split
to each model, and encode its top four most-confident label
predictions as a first-order logical literal, as in the following
example for Flowers-102 sample number 121 given as input
to the CIFAR-100 ResNet-18 model:

Top4(S121, Cifar, “worm”, 0.2265, “plate”, 0.1399,
“keyboard”, 0.1190, “aquarium fish”, 0.0524) (3)

As done in our previous work [8], we treat confidence values
as likelihoods, and factor these values into the probability
of a given solution. In order to direct Etcetera Abduction to
consider only one of the top four most-confident label assign-
ments, we include four special axioms in each knowledge base
to force the label selection and include the corresponding like-
lihood when computing a solution’s probability. For example,
the following axiom selects the third-most probable label from
a classifier’s top four, with its likelihood equal to its confidence
(encoded in the first argument of the axiom’s etcetera literal).

(8 s, c, c1, p1, c2, p2, c3, p3, c4, p4)

Class(s, c, c3) ^ Etc3(p3, s, c, c3) !
Top4(s, c, c1, p1, c2, p2, c3, p3, c4, p4) (4)

D. Search for Most-probable Label
To identify the most likely base domain label in our tasks,

the Top4 literals for each ensemble classifier are passed as
input to Etcetera Abduction1, along with the knowledge base
for the task. The search then commences by back-chaining
from these input observations through knowledge base axioms
until solutions are found that only contain etcetera literals.
The joint probability of each of these solutions is then naively
estimated as the product of the etcetera literals, and the base

1In this research, we used a Python implementation of Etcetera Abduction
available at: https://github.com/asgordon/EtcAbductionPy

domain class label entailed by the most-likely solution is
selected as the predicted label.

For example, Etcetera Abduction would unify the observed
literal (3) with the consequent of axiom (4), leading it to
consider two new assumptions in its search:

Class(S121, CIFAR, “keyboard”) (5)
Etc3(0.1190, Cifar, S121, “keyboard”) (6)

The likelihood (0.1190) of the etcetera literal (6) would
be included in the probability calculation for any solution
involving this axiom, while the Class literal (5) would further
back-chain via axiom (2), above, which would further add two
additional assumptions in the search:

Class(S121, F lowers, “pink primrose”) (7)
Etckeyboard|pinkprimrose(0.2, S121) (8)

Again, the etcetera literal (8) would factor into the proba-
bility of the solutions, while the Class literal would further
backchain on axiom (1), above, such that the prior probability
the base domain class label is included in solutions:

Etcpinkprimrose(0.0098, S121) (9)

Each of the other most-confident labels is similarly consid-
ered, as are each of the possibilities predicted by the other
classifiers in the ensemble. When a particular combination of
label predictions back-chain to the same base domain class
label, they are unified as common factors in the solution, in-
creasing its overall probability. When the most-likely solution
is identified, the entailed class label is selected as the predicted
label for the test sample.

V. RESULTS

Table II shows the results of our four experiments, with
the accuracy of the task’s base model, the accuracy of our
approach when the base model is included in the observations
alongside the ensemble predictions, and the accuracy of the
ensemble predictions without inclusion of the base model.

For the ensembles that included the base classifier in its
observations, we see that the inclusion of the ensemble had
nearly no impact on the resulting accuracy, except in one
task. When compared to the accuracy of a ResNet-18 model
trained using the Flowers-102 training data split, the ensemble
improved accuracy by 4.36%, which represents a 41% gain
over the poor performance of the base classifier. With 102
classes and only 10 training examples per class, the Flowers-
102 dataset is indeed much too small to train an accurate
model on its own, and the additional evidence provided by
the ensemble made a substantial impact on performance. In
contrast, this additional evidence had no benefit in the other
three tasks.

For the ensembles that did not include the base classifier
in its observations, we see markedly lower performance com-
pared to the base classifier, except again in the Flowers-102
task. For the Flowers-102 task, the ensemble shows only a
slight drop in accuracy compared with the poor-performing



TABLE II
ACCURACY OF BASE CLASSIFIER, ENSEMBLE WITH BASE, AND ENSEMBLE WITHOUT BASE.

Base Ensemble Base accuracy Ensemble w/base Ensemble w/o base

CIFAR-100 Flowers-102, Food-101, MNIST-Fashion 0.3921 0.3712 0.0549
Flowers-102 CIFAR-100, Food-101, MNIST-Fashion 0.1057 0.1493 0.0872

Food-101 CIFAR-100, Flowers-102, MNIST-Fashion 0.3569 0.3529 0.0515
Fashion-MNIST CIFAR-100, Flowers-102, Food-101 0.9118 0.9001 0.3381

base model. In contrast, while the ensembles each perform
substantially above a majority baseline in each of the other
tasks, each performs markedly worse than the base models.

VI. DISCUSSION

When interpreting the results of our experiments, we first
consider the question, Why did we think this would work
in the first place? The accuracy of each ensemble model
on an out-of-domain input is always zero, e.g., a ResNet-
18 model trained on Fashion-MNIST data will never guess
“pink primrose” when presented with an image of a flower.
However, we do not expect (or observe) that its predictions are
going to be uniformly random over its out-of-domain labels.
Intuitively, there must be some visual features in a picture of
a pink primrose flower that push the model toward guessing
“ankle boot” over “sneaker”. Insomuch as these output labels
are correlated with discriminate features in the Flowers-102
domain, then these out-of-domain predictions provide some
information that should be helpful in selecting the most
likely in-domain class label. While these correlations may be
somewhat weak, we expected that combining such information
from an ensemble of pre-trained classifiers would improve the
performance of an in-domain base classifier.

Instead, our results suggest that the outputs of our ensemble
are providing no additional information to help discriminate
among classes in the base domain, except in the case where
a base classifier is itself exceedingly inadequate. Where suf-
ficient training data is available, the discriminating features
that are learned by a base model seem to already include all
of the discriminating information that might be gleaned from
correlations with out-of-domain predictions.

Our results indicate that training a base classifier on the
available in-domain training data is preferable to our method
in most contexts. Still, out method may have some application
when a training dataset is very small, as in the case with
the Flowers-102 dataset, within some limits. As our method
estimates conditional probabilities by presenting training data
to ensemble classifiers, these estimates will degrade as the
available training data decreases, leading to lower accuracy in
ensemble predictions. With exceedingly tiny training datasets,
a zero-shot multi-modal foundational model like CLIP [15] is
likely to outperform our approach for most image classification
tasks.

While the results in our experiments are largely negative,
we see several improvements to our approach that could be
explored in future work. First, we expect that much larger
ensembles of pre-trained classifiers would improve accuracy,

particularly when the domains of ensemble classifiers include
those that more closely aligned with the base domain. While
the inclusion of radically out-of-domain models did not have
a substantial negative impact on performance in our exper-
iments, we expect that the addition of several close-domain
models would be highly beneficial. Likewise, the inclusion
of only high-performing models in the ensemble might yield
better results, allowing for more confidence in the predicted
ensemble labels. Finally, we expect that obtaining better
confidence estimates from our ensemble classifiers would
improve the probabilistic ranking of candidate solutions. Well-
calibrated models, where confidence of predicted labels cor-
responds to their likelihood, is critical when applying our
method, as extreme overconfidence in an incorrect label is
hard to overcome. The effect of calibration techniques such
as temperature scaling [16] is an important consideration in
future experiments.

One additional contribution of our research is to demon-
strate a new application area for Etcetera Abduction, the
software tool used in this research. Whereas the use of first-
order logical abduction is highly unusual in contemporary
computer vision research, we found Etcetera Abduction to
be well-suited to tasks that involve combinatorial search
and probabilistic reasoning. Our large automatically-generated
knowledge bases of thousands of axioms are certainly among
the largest ever used in Etcetera Abduction research, which
has historically used smallish knowledge bases of hand-crafted
commonsense axioms with fabricated probability estimates.
We are encouraged by the performance of this tool given the
large knowledge base and search space, and we will continue
to look for opportunities to apply it in other computer vision
tasks involving the aggregation and interpretation of evidence.
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