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Abstract

Advances in large language models have created new opportunities for the translation of natural
language into formal representations for use in symbolic reasoning systems, particularly when the
formal vocabulary is well-specified with sufficient training examples. In this paper, we explore the
more challenging problem of automating the knowledge engineering task of authoring the formal
vocabulary itself, based on the representational needs of the input text. We describe a methodology
that incrementally builds a formal vocabulary of first-order predicate-argument definitions and con-
stant terms by prompting a large language model and restricting its output generations to adhere to
tightly constrained formalisms. We evaluate this methodology in its application to a challenging lit-
erary text, William Shakespeare’s narrative poem “Venus and Adonis” (1593), with a focus on how
well new vocabulary is reused by the large language model in after it has been introduced. We then
investigate the semantic content of the generated formalisms by manually sorting the vocabulary
into a taxonomy of 48 foundational areas used in knowledge representation research. Our results
point to several challenges in fully-automated knowledge engineering pipelines, but also point to
new opportunities in using large language models to support axiomization of foundational theories.

1. Introduction

The phenomenal rise of large language models (LLMs) in the field of artificial intelligence has also
challenged prevailing theories and methodologies in the adjacent fields of cognitive psychology and
cognitive systems. While few would question the impressive abilities of LLMs, their success does
not obviate the need for computational cognitive models that account for the enormous breadth
of human reasoning skills, or the scientific pursuit of such models. Still, some of the enthusiasm
for formal logic in models of automated reasoning has certainly waned over the years, with fewer
researchers today pursuing approaches that involve the hand-authoring of knowledge base axioms
of foundational commonsense theories. In the current climate, it is a fair question to ask: What is
the role of logic-based formalisms in this new world of LLMs?

In this paper we flip this question around, and ask: What role can LLMs play in facilitating the
use of logic-based formalisms in our computational models of cognitive systems? Arguably, the two
core strengths of today’s LLMs are in their command over natural language processing tasks and
their enormous breadth of commonsense knowledge about the everyday life. As such, these sys-
tems seem well-suited for tackling two of the hardest problems in the practical use of formal logic in
reasoning systems. First, we should expect that LLMs would be very good at converting natural lan-
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guage expressions of facts or knowledge into logical form, as well as from logic back into language.
Indeed, recent work has shown considerable success in LLM-based conversion of language into
SQL queries and mathematical expressions, facilitating useful hybrid language-reasoning systems.
Second, we should expect that LLMs would be good at articulating the content of core common-
sense knowledge domains, with the right prompting. Their excellent performance on commonsense
reasoning benchmarks provides clear indication that this commonsense knowledge is encoded, in
latent form, among the weights of these models, and is readily employed in the next-word prediction
task.

To explore these opportunities for LLM-assisted integration of logical reasoning, this paper in-
vestigates the use of an LLM in the formalization of a complex narrative text, namely William
Shakespeare’s lengthy narrative poem, Venus and Adonis, likely his first published work (1593).
While previous research has demonstrated the use of LLMs in converting text into well-specified
formalisms, here we investigate the more challenging knowledge engineering problem of authoring
the formal vocabulary itself, based on the representational needs of the input text. After reviewing
previous research, we describe a methodology that incrementally authors a representational vocabu-
lary of predicate-argument literals in first-order logic, as well as constants for entities in the domain
of discourse. New literal forms and constants are introduced by an LLM when it judges the existing
vocabulary insufficient to encode the propositional content of an input text, where this propositional
content is itself a distillation of the text performed by the LLM. We describe the application of this
approach to the 199 six-line stanzas in Venus and Adonis, resulting in a representational vocabu-
lary of 673 definitions of predicate-argument forms, along with 847 domain constants. To better
understand the representation choices made by the LLM, we manually sorted the literal definitions
into a taxonomy of 48 core commonsense representational areas resulting from previous (human-
authored) knowledge engineering research.

2. Related work

Although some research in formal knowledge representation has been criticized for focusing exces-
sively on simple domains, this is not true of previous work on the formalization of literary works.
Hobbs (1990), in his book “Literature and Cognition,” illustrates the difficulty of the knowledge rep-
resentation problem in his analysis of several diverse texts, including a sonnet by John Milton and
a novella by Gérard de Nerval. In applying his theory of discourse coherence to these texts, Hobbs
argues that the process of discourse interpretation must juggle both local and global coherence, em-
ploying numerous high-level discourse relationships in order to identify the underlying coherence
structure. Elsewhere, Hobbs et al. (1993) expanded on how complex discourse interpretation of this
sort could be modeled in computers as logical abduction, where the logical form of an input text
encodes a reader’s best explanation of the words as observed, given the reader’s knowledge of syn-
tax, discourse, and the commonsense world. It would be many years before computational systems
existed that implemented this proposal to any degree (Inoue et al., 2014), requiring major advances
in statistical syntactic parsing (McClosky et al., 2006), fast logical abduction (Inoue & Inui, 2013),
and the automated creation of sufficiently large knowledge bases (Ovchinnikova, 2012).
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In many respects, these previous works toward the logical formalization of discourse structure
stem from an older tradition of structuralism in narratology, e.g., Vladimir Propp’s (1928) early
dissection of the compositional plot structure in folktales. Finlayson (2016) demonstrated that the
high-level narrative structures that Propp’s identified (functions) could be inferred algorithmically
from lower-level discourse structures (syntax, co-reference, semantic roles) in a hand-annotated
corpus of fifteen folktales. However, the enormous challenges of curating a high-quality annotated
corpus of this sort remains a significant obstacle in learning narrative structures at this level of
abstraction.

Part of the appeal of LLMs in high-level narrative analysis is to reduce the need for hand-
annotated training corpora, at least with regard to the annotation of the lower-level discourse struc-
ture. Huge stores of unannotated text, along with massive compute time, seem to be all that is
necessary to implicitly learn enough of the essential discourse features to perform reasonably well
on various discourse interpretation tasks in zero-shot or few-shot training contexts. Previous efforts
to automatically translate natural language into structured formalisms include a two-step method
called Semantic Parsing by Paraphrasing (SPP) (Berant & Liang, 2014; Shin et al., 2021). In this
framework, the first step is to use a language model to paraphrase a natural language utterance into
a canonical form, i.e., a text-to-text translation where the target paraphrase of the input is trivially
converted into its formal form, in the second step, using a formal grammar or set of hand-authored
rules. Recent advances in this approach have sought to eliminate the need to fine-tune large lan-
guage models in the paraphrase step via clever sequences of engineered prompts (Yang et al., 2022)
and improve compositional generalization by incorporating syntactical decomposition in prompt
sequences (Drozdov et al., 2022).

A common feature of SPP and related approaches is that the target formalisms are all well
defined in advance. For example, a typical experimental task in this line of work is to convert
English queries into canonical query expressions in natural language, and then into the well-formed
format of SQL database queries, e.g., using the Geo-Query dataset (Zelle & Mooney, 1996) of 800
SQL queries to a database of geographic statistics. Successful completion of this task requires that
the output be valid SQL statements, using known table names (e.g., city, state) and standard SQL
connectives (e.g., SELECT, WHERE). A key difference between previous work and our present
investigation is the lack of a well-defined target formalism. Instead, our aim here is to investigate
an LLM’s ability to devise the necessary representational vocabulary, as needed, to complete the
formalization task.

3. Methodology

This section describes a method for using an LLLM to incrementally devise a logical vocabulary, as
needed, to represent the logical form of an input text. While this method makes no assumptions
about the structure of the input text, we formulate that the output of the process consists of three
parts. First is a representation of the input text itself as an ordered list of ground literals in first-
order logic, i.e., a predicate-argument structure where the arguments are all constants. Second is a
vocabulary of predicate-argument forms, consisting of lifted first-order literals (where the arguments
are all variables) and an English-language gloss that defines the relationship between predicated
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arguments. Third is a vocabulary of constants in the domain of the input text, along with their
English-language gloss.

Our choice to limit the output representations to an ordered list of ground literals does limit
the structural complexity of the resulting logical form to that which emerges from shared constants
across literals. However, we have found this style of representation sufficient to represent narratives
in previous work (Gordon, 2018), particularly when viewed as intermediary representations for
input to downstream interpretation processes.

3.1 Formalization Algorithm

The basic formalization algorithm used in this investigation is shown in Figure 1, a Python function
that takes as input a text and any available initial representational vocabulary or constants, and
returns as output the logical forms of the text along with updated representational vocabulary and
constants. The six functions that are called via this algorithm each query a locally hosted LLM to
generate a response, as follows.

def formalize_text (text, vocab, consts):
result = []
sentences = simple_sentences (text)
for sentence in sentences:
if not sufficient_vocab (sentence, vocab):
vocab.append (acquire_vocab (sentence, vocab))
if not sufficient_consts (sentence, consts):
consts.extend (acquire_consts (sentence, consts))
result.append(ground_literal (sentence, vocab, consts))
return (result, vocab, consts)

Figure 1: Formalization Algorithm

The function simple_sentences prompts the LLM to process the input text into a list
of simple sentences that can be expressed as a single positive logical literal. The algorithm then
iterates over these simple sentences. For each sentence, sufficient_vocab first asks the LLM
to judge whether the existing logical vocabulary is sufficiently expressive to capture the meaning
of the sentence. If not, acquire_vocab prompts the LLM to create a new vocabulary definition
for a predicate-argument form, as a lifted literal in first-order logic. Next, sufficient_consts
asks the LLM to judge whether the existing catalog of constants is sufficient to refer to the entities in
the sentence, and if not, acquire_consts prompts the LLM for one or more additions. Finally,
ground_literal prompts LLM to use the (possibly expanded) formal vocabulary and constants
to represent the sentence as a ground literal, which is added to the result.

Importantly, none of these six functions allow the LLM to generate totally unconstrained text
responses. In each case, we use functionality of the locally hosted LLM software (11ama . cpp)to
constrain the generated outputs to conform to a given JSON schema, as described in the next sec-
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tions. In this manner, we are able to guarantee that the responses from each of these six functions
are valid sentence lists, booleans, vocabulary definitions, and constant definitions, accordingly.

3.2 Prompting for Simple Sentences

The first LLM task in this methodology is to rewrite the input text into a set of simpler sentences.
Table 1 shows the prompt template that was used for this task, where {text} is replaced with all or
successive portions of the entire text to be formalized, e.g. one paragraph at a time. The aim of
this step is to reduce the complexity of the input text so that the corresponding simple sentences
can each be represented using a single literal in first-order logic, i.e., using a single predicate form.
By requesting the removal of subordinate clauses and co-references, the intention is to enable each
simple sentence to be formalized independently of others in the set.

In this and all subsequent functions, the LLM’s generation is constrained by passing a JSON
schema of acceptable output. In this function, this schema is simply a list of strings of any length.

Table 1: Prompt Template for simple_sentences

Your job is to read an input statement and rewrite it as a set of simpler sentences that do not
include subordinate clauses or pronoun references. Each output sentence should be easy to
read and stand on its own, without referencing any of the other sentences. The format of your
output should be a JSON array of strings. Here is the input sentence: {text}

3.3 Prompting for Vocabulary and Constants

The next four tasks in this methodology are to determine if the vocabulary and constants are suf-
ficient to adequately represent each of the simple sentences derived from the input text. Table 2
shows the two prompt templates related to the sufficiency of the vocabulary. In both prompts, the
entire current representational vocabulary is inserted in place of the {vocab} tag as a JSON string
representation of a list of available predicates, their variable arguments, and an English gloss that
defines the relationship among variables. In the first prompt, the output is constrained using a JSON
schema for the enumerated strings “yes” and “no”. For the second prompt, the JSON schema is for
a lifted literal of exactly the form of current vocabulary entries.

The two corresponding prompt templates for constants are omitted for space, but follow an
almost identical format. The existing constants are inserted as a JSON string representation of a list
of available constant terms, along with an English gloss that defines their reference. Likewise, the
LLM generation to acquire_consts is constrained using a JSON schema for a list of one or
more new constants in exactly this form.

3.4 Prompting for Output Literals

Having established that there are sufficient representational vocabulary and constants to formalize
a given simple sentence, the final LLM task is to represent the simple sentence as a ground literal.
Table 3 shows the prompt template used for this task, which again includes all available literal
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Table 2: Prompt Templates for sufficient_vocab and acquire_vocab

function prompt template

sufficient_vocab Your job is to answer a difficult yes/no question. The question is this:
given a simple english sentence and vocabulary of logical forms in
first-order logic, is there some item in the vocabulary that is expressive
enough to represent the meaning of the sentence? To be sufficiently ex-
pressive, there must be some logical form in the vocabulary that has a
predicate that captures the relationships between the entities referenced
in the english sentence. If there is some vocabulary item in the list that is
sufficient, then answer “yes”. If there is not an existing vocabulary entry
that is sufficient to represent the sentence, then answer “no”. Here is the
list of vocabulary items: {vocab} ...and here is the sentence that need to
be represented: {sentencej. Please provide your response in one word,
either “yes” or “no”.

acquire_vocab Your job is to add a new entry to an existing vocabulary of first-order
logical forms. Each entry in the vocabulary has a predicate and a list
of arguments (variables) along with an English gloss that describes how
the arguments relate to each other. Here is the vocabulary as it exists
before your addition: {vocab} ...Unfortunately, this list is not sufficiently
expressive to represent the following sentence: {sentence} Your job is
to write a single addition to this vocabulary that enables this sentence
to be represented. Please format your response as a JSON object with
a “predicate”, “arguments” consisting of an array of variables, and a
“gloss” which briefly explains the relationship between the variables.

forms and domain constants represented as JSON strings. Here the output generation is constrained
using a JSON schema for a ground literal, which is the same as a lifted literal, above, except that
arguments must be constants. In this prompt, the LLM is allowed to restate the input sentence as
the English gloss of the ground literal, and in our observations it nearly always takes that option.

Table 3: Prompt Templates for ground_literal

Your job is to represent a simple english sentence as a first-order logical literal using only
logical forms from fixed vocabulary and using constants from a fixed list. The vocabulary and
the list of constants is sufficient to adequately represent the sentence as a single literal; you
Jjust need to pick the right logical form and select the right constants and put them in the right
place in the argument list. Here is the vocabulary of logical forms that you have to choose
from: {vocab} ...and here is list of constants that you can use for arguments: {consts} ...and
here is the sentence that you need to represent: {sentence}. Please format your response as a
JSON object with a “predicate”, a list of “arguments” (constants), and an english gloss. You
can repeat the original sentence for use as the english gloss.
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3.5 Prompt Engineering

The six prompt templates described in this section were authored without extensive prompt engi-
neering, and are largely first drafts of the textual instructions we provided to the LLM. In composing
these templates, our approach was to verify that the instructions could be understood by an LLM
in a typical chat interface, without constraining the model’s generation using JSON schemas. In all
cases we observed that the LLM understood the instructions and could perform the tasks despite
our use of technical terms related to grammar and formal logic. In these unconstrained generations
we observed several variations in how the LLM formatted the predicates and arguments of logical
literals, as well as verbose justifications of these responses. We expect that these templates could
be improved in several ways, such as the inclusion of examples of how the LLM should respond in
various cases for each subtask. In future work, a more rigorous prompt-engineering methodology
could be pursued with the development of automated benchmarking tools for each subtask.

4. Application to Shakespeare’s Venus and Adonis

We investigated the application of our formalization methodology to a particularly challenging lit-
erary text, William Shakespeare’s narrative poem Venus and Adonis. Thought to be Shakespeare’s
first published work (1593), the poem reimagines the Latin poet Ovid’s telling of the meeting of the
Roman goddess of love and Adonis, an extremely handsome mortal man. In Shakespeare’s poem,
Venus sees and falls in love with Adonis, and comes down to earth to seduce him. Adonis, however,
is a man uninterested in love - even the love of a goddess - and would prefer to spend his time
hunting. After Adonis refuses her and scorns her for her attempts, Venus faints. Fearing that he may
have killed her, Adonis comforts her and gives in to her requests for a kiss, which further encour-
ages her. Adonis refuses her request to see each other again the next day, as he will be hunting wild
boar, leading Venus to warn him of her vision that he will be killed by a boar. She again attacks
him in lust, and Adonis responds by lecturing her on the difference between love and lust, before
leaving her in tears. The next day, Venus indeed finds Adonis killed in the woods by a wild boar.
The devastation of her loss causes her to decree, as the goddess of love, that love will henceforce be
mixed with suspicion, fear, and sadness. She then departs in her own sadness, sequestering herself
in bereavement to Paphos on Cyprus.

Shakespeare narrates the story of Venus and Adonis as a poem consisting of 199 stanzas, each as
six lines of iambic pentameter rhyming ABABCC, for a total of 1,194 lines. To process the full text
using the algorithm shown in Figure 1, we first divided the text into individual six-line stanzas. The
stanzas were then iteratively presented as the input text to the algorithm, with the output expanded
vocabulary and constants used as inputs in each subsequent iteration.

In this investigation, we used Google’s open-weight Gemma 3 large language model (Gemma
Team, Google DeepMind, 2025), specifically the 27B-parameter variant with 4-bit K-M quantized
weights in GGUF format. This model was hosted on a 2023 Mac Studio with an M2 Max processor
with 96 GB unified memory using a 11ama . cpp local server, prompted from our custom Python
scripts using the Python Requests module. We set the context window to 100K tokens, and disabled
the model’s Sliding Window Attention to better manage memory usage.
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Table 4 shows the results of applying the simple_sentences function to the first stanza of
Venus and Adonis, converting its six lines into nine simple sentences. This degree of expansion
when rewriting the input text was consistent across all 199 stanzas, with a mean number of simple
sentences for each six-line stanza of 9.13 (SD=2.14), for a total of 1,817 simple sentences.

Table 4: Example input text conversion into simple sentences

EVEN as the sun with purple-colour’d face The sun had a purple face.

Had ta’en his last leave of the weeping morn,  The sun finished rising.

Rose-cheek’d Adonis hied him to the chase; Adonis went to the hunt quickly.

Hunting he loved, but love he laugh’d to scorn; Adonis loved hunting.

Sick-thoughted Venus makes amain unto him,  Adonis did not believe in love.

And like a bold-faced suitor ’gins to woo him. ~ Venus was feeling unwell.
Venus went to Adonis with purpose.
Venus began to try to win Adonis’s affection.
Venus acted like a confident suitor.

In considering the available expressivity of the representational vocabulary (initially empty), the
LLM judged that eight of the nine simple sentences in Table 4 required the introduction of a new
predicate-argument literal form. Table 5 shows the eight new vocabulary definitions that were added
by the acquire_vocalb function in our algorithm.

Table 5: Examples of the vocabulary added by acquire_vocab

predicate arguments  gloss

has_face_color 7x, 7y Entity 7x has a face color of ?c.

finished X Event ?x is completed.

went_to 7x, 7y, 7Tm  Entity ?x went to location ?y using mode ?m.
loves 7,y Entity ?x loves activity ?y.

believes_in 7,y Entity ?x believes in entity ?y.

feeling X, 7s Entity ?x is feeling state ?s.

attempt 7%, 7y, 7z Entity ?x attempts activity ?y to achieve ?7z.
acted_like 7,y Entity ?x acted like ?y.

Likewise, the acquire_consts function introduced six new domain constants for use in the
output literals, including the constants ADONIS and VENUS for the two main characters. Table 6
shows an example of the output of the ground_literal function, where the nine simple sen-
tences from Table 4 are formalized using the eight new logical forms and six new domain constants.

Even in these first nine ground literals in Table 6 there are some notable representational choices.
The efficient reuse of the predicate went_to is encouraging, but ignoring the negation when ap-
plying the believe_in form is somewhat concerning. Notable as well is the reuse of the constant
HUNT to refer both to Adonis’s favorite activity as well as to Venus’s plan to seduce Adonis.

After processing all 1,817 simple sentences into an equal number of ground literals, our for-
malization algorithm had grown the size of the vocabulary to 939 literal forms and 1,292 domain
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Table 6: Example formalisms generated by ground_literal

The sun had a purple face. (has_face_color SUN PURPLE)
The sun finished rising. (finished SUN)
Adonis went to the hunt quickly. (went_to ADONIS HUNT QUICKLY)
Adonis loved hunting. (loves ADONIS HUNT)
Adonis did not believe in love. (believes_in ADONIS LOVE)
Venus was feeling unwell. (feeling VENUS UNWELL)
Venus went to Adonis with purpose. (went_to VENUS ADONIS PURPOSE)
Venus began to try to win Adonis’s affection.  (attempt VENUS HUNT ADONIS)
Venus acted like a confident suitor. (acted_like VENUS SUITOR)

(a) Literal forms (b) Constants

Figure 2: Histograms of the frequency of reuse.

constants. To explore further how literal forms and constants were reused during the execution
of this formalization process, we tabulated the usage of each form and constant across all 1,817
ground literals. The results, plotted as histograms in Figure 2, show that the majority of literal
forms (71.67%) and constants (65.56%) were used only once across all ground literals. For literal
forms, the top 10 most-used predicates are as follows: is (75), says_is (44), says (31), would (30),
is_like (28), wants (15), do_not (15), feel_emotion (13), cries (12), and loves (11). These usage
rates for predicates seem reasonable, given that the poem Venus and Adonis primarily focuses on
tearful conversations between two characters about love. Likewise, the top 10 most-used constants
are as follows: SHE (359), HE (219), YOU (159), I (139), TIME (112), LOVE (105), HIS (93),
HER (86), ACTIVITY (79), and HIM (70). These usage rates for constants, excessively dominated
by pronouns, indicate that our approach largely failed to reuse constants for VENUS and ADONIS
as the process progressed.
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5. Comparison to Foundational Theories

The quantitative findings reported in the previous section provide some insight into the ability of
an LLM to invent and reuse formal vocabulary. However, some important questions remain. These
results show some reuse of literal forms, but assessing whether this rate is high or low depends on
their semantic scope. If an analysis of these forms reveals substantial semantic overlap or trivial
variations, then these rates are lower than would be desired. If instead the semantic scope of these
forms is comparable to formalizations of knowledge domains produced by professional knowledge
engineers or artificial intelligence researchers, then we would have a more favorable opinion of the
LLM’s knowledge engineering abilities and reuse rates.

In order to conduct a qualitative analysis of the LLM’s invented representational vocabulary, we
manually sorted each of the 939 LL.M-authored lifted literal definitions into an existing taxonomy
of foundational and commonsense knowledge domains. As a target taxonomy, we selected the
48 foundational representational areas identified by Gordon (2004) in his large-scale analysis of
372 high-level planning strategies across 10 planning domains, e.g., the warfare strategies in Sun
Tzu’s Art of War and the political strategies of Niccolo Machiavelli’s The Prince. This taxonomy
was selected in part due to recent interest in its use as a basis for comprehensive benchmarks in
automated commonsense reasoning evaluations (Santos et al., 2022; Kejriwal et al., 2022), but also
because a large portion of this taxonomy was subsequently formalized as a theory of commonsense
psychology in first-order logic (Gordon & Hobbs, 2017). This allowed us to draw some coarse-
grained comparisons between the LLM-authored vocabulary and a broad-coverage taxonomy, as
well as fine-grained comparisons between the representational choices made by the LLM and by
leaders in the field of knowledge representation.

Table 7 shows the distribution of LLM-authored literal forms after manually sorting them into
the taxonomy’s 48 representational areas. From this coarse analysis, it is evident that the LLM-
authored formalisms, in general, are widely distributed across most foundational areas identified in
previous large-scale knowledge engineering research. It is notable that the representational areas
that specifically involve direct action among agents or the physical world (areas 18, 19, 20, 21,
22, and 48) cover a substantial portion of all LLM-authored formalisms, possibly owing to the
nature of Venus and Adonis as a narrative of the interaction between two people. The absence of
any forms related to Plans, Planning Modalities, Plan Adaptation, and Scheduling suggests that
planning beyond the present moment is not a major concern among these two characters, while
concerns for States, Events, Space and Physical Entities are more important in this narrative.

In reviewing the individual sets of forms sorted into these 48 representational areas, we do
not find evidence for widespread semantic overlap among LLM-authored forms. In a handful of
cases there are nearly-identical forms introduced, e.g., (amazed_by 7x ?y) and (is_amazed_by ?x
7y) in the area of 31 (Managing Expectations). More often, we find that representational areas
with an over-abundance of LL.M-authored forms include predicates that would be more elegantly
split into two different literal forms. For example, the 37 LLM-authored predicates related to area
24 (Similarity Comparisons) include predicates that assert similarity between entities in a specific
characteristic, such as glisters_like and consumes_like, or that judge one entity greater than another
along some specific dimension, such as fairer_than and superior_to. The formalization algorithm we
investigated in this research does not permit multiple literals for a single simple sentence, however.

10
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Table 7: Distribution of 939 LLM-Authored Literal Forms Across Representational Areas

01. Time (8) 25. Memory retrieval (3)

02. States (46) 26. Emotions (34)

03. Events (43) 27. Explanations (7)

04. Space (45) 28. World envisionment (35)
05. Physical entities (52) 29. Execution envisionment (35)
06. Values and quantities (11) 30. Causes of failure (4)

07. Classes and instances (3) 31. Managing expectations (7)
08. Sets (0) 32. Other agent reasoning (9)
09. Agents (12) 33. Threat detection (3)

10. Agent relationships (17) 34. Goal management (10)

11. Communities and organizations (5) 35. Planning modalities (0)
12. Goals (20) 36. Planning goals (11)

13. Goal themes (4) 37. Plan construction (2)

14. Plans (0) 38. Plan adaptation (0)

15. Plan elements (3) 39. Design (6)

16. Resources (17) 40. Decisions (4)

17. Abilities (14) 41. Scheduling (0)

18. Activities (49) 42. Monitoring (14)

19. Communication acts (66) 43. Execution modalities (43)
20. Information acts (16) 44. Execution control (16)

21. Agent Interaction (57) 45. Repetitive execution (2)
22. Physical interaction (56) 46. Plan following (6)

23. Managing knowledge (34) 47. Observation of execution (8)
24. Similarity comparisons (37) 48. Body interaction (33)

For the representational areas related to commonsense psychology, we were able to conduct
a more fine-grained comparison between the LLM-authored literal forms and those authored by
Gordon and Hobbs (2017) as part of their methodical formalization of these domains. Specifically,
we compared the definitions of predicate forms that are listed at the end of each chapter in Gordon
and Hobbs’s theory with LLM-authored literal forms sorted into the corresponding category. Table
8 shows an example of a fine-grained comparison in the representational area of “Design”, area 39
in Table 7 and Chapter 40 in Gordon and Hobbs formalization.

Table 8 indicates that in some cases, the LLM-authored literal form is nearly identical in seman-
tic scope to one in a well-crafted formal theory, e.g., designed_to overlaps strongly with planFor,
and is_for strongly overlaps with intendedUse. In other cases, forms differ only slightly in scope,
e.g., has_flaw refers to a characteristic of an instance, while flawedDesign refers to all instances in
class. As seen elsewhere, the LLM-authored literals include some that would have been better to
divide into two forms, e.g., should_not_fade and is_for_bearing. From a knowledge engineering
perspective, the most interesting LLM-authored literal is possibly is_simple, which appears out-

11
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Table 8: Comparison of Literal Forms in the Representational Area of Design

author form gloss

LLM (has_flaw 7x ?y) Entity ?x has flaw ?y.
(is_for 7x ?y) Entity ?x is intended for activity ?y.
(is_for_bearing 7x) Entity ?x is intended for bearing.
(is_simple ?x ?s) Entity ?x is simplicity level ?s.
(should_not_fade ?x ?c) Entity ?x should not fade in color ?c.
(designed_to ?x ?y 7z) Entity ?x is designed to cause state ?z to en-

tity ?y.
Human (artifact 7x) 7x is an artifact.

(planFor 7p 7x)

(artifactl ?x)
(intendedUse ?el ?x ?a)

(design 7x)
(notAchieve 7s ?e)

(terminalSubgoalsOf 7s 7p)

(flawedDesign ?x)
(designing ?e 7a 7x 7s)

(designConstraint 7e 7x)
(designAdaptation ?e ?a ?x)

(designFailure 7e ?a)

?p is the plan realized in the structure of arti-
fact 7x.

7x is a physical artifact.

?e1 is the intended use of artifact ?x by agent
a.

7x is a design.

The occurrence of the eventualities in ?s do
not result in ?e occurring.

The eventualities in ?s are the terminal sub-
goals in plan 7p.

?x is a flawed design.

?e is a designing activity by agent ?a in de-
signing ?x via a sequence ?s of designs.

?e is a design constraint design 7x satisfies.
The designing activity ?e by agent ?a of de-
sign 7x is a planning activity by adaptation.
7e is a designing activity by agent ?a that
fails.

(moreAdherentToDesign ?x1 7x2 ?x)  Instance ?x1 adheres more closely to design
?x than instance ?7x2 does.

side the representational scope of the hand-crafted theory, encouraging the further expansion of the
hand-authored formalization toward concerns for simplicity and elegance as qualities of designs.

6. Discussion

Our investigation of this formalization methodology yielded some encouraging results. Through
the quantitative and qualitative analysis of its application to Shakespeare’s Venus and Adonis, we
found that the LLM was indeed fairly competent at inventing new formal vocabulary when needed,
and subsequently reusing this vocabulary in latter representations. The semantic breadth of the
LLM-authored vocabulary was comparable in scope to established broad-coverage taxonomies, and
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the specific literal forms were often comparable to those of skilled knowledge engineers. Although
it must be noted that defining literal forms is only a small part of axiomatizing a foundational
domain, the modest success of our formalization algorithm suggests that fully-automated domain
axiomization of foundational domains may be possible with future research progress. We also
see some role of our current algorithm in supporting human knowledge engineering in a mixed-
initiative fashion. For example, we imagine that this algorithm could be useful in the early stages
of axiomitizing knowledge in specific technical or professional domains, where selected domain-
specific texts could be processed in order to establish the required scope of the knowledge engineer’s
axiomization task. Likewise, our algorithm’s capacity for reusing existing vocabulary may work
equally well with hand-crafted definitions, creating opportunities to evaluate and refine axioms of
domain theories with natural language benchmarks.

This investigation also highlighted many shortcomings in our proposed methodology, many of
which stem directly from the design of the formalization algorithm itself, in Figure 1. Here, in-
teraction with the LLM is cast as a set of six functions, independent of each other, each of which
prompts the LLM with an empty context. As such, this algorithm is horribly inefficient. In the
worst case, the algorithm passes the entire vocabulary and entire list of constants to the LLM three
times each - for every simple sentence derived from the input text. In the early stages of processing,
when the vocabulary is small, this inefficiency is negligible. However, after processing 1,817 simple
sentences in Venus and Adonis, the vocabulary had grown to 939 literal forms and 1,292 domain
constants, such that processing the latter stanzas each took several hours of compute time on our
local hardware. While some speed improvements might be made by tuning the configuration of the
local 11ama . cpp server, particularly the memory management of the k-v cache, a better solution
would be to redesign the formalization algorithm altogether. Instead of six independent functions,
the tasks directed to the LLM would be better conceived as dialogue moves in an ongoing conversa-
tion, in the same way that people interact with LLM providers via web chat interfaces. Ideally, the
formalization is conducted incrementally over the course of a single chat that fits within the context
window of the LLM, such that all of the newly invented literal forms and constant definitions are
still in context and available for use later in the conversation. Such a conversational approach should
also improve the LLM’s ability to reuse constants for named entities, e.g., VENUS and ADONIS,
rather than pronouns, as the larger narrative context should make it easier for the LLM to resolve
the references when deriving the simple sentences.

A further improvement on our methodology would be to enable simple sentences to be for-
malized using multiple ground literals. Constraining the LLM to single predicate-argument form
led to the introduction of spurious predicates that were used only once during processing, e.g., the
fairer_than and consumes_like predicates discussed above. For example, the first simple sentence
in Venus and Adonis, “The sun had a purple face,” might be more elegantly represented with a com-
bination of has_part and has_color literals and a FACE constant, rather than awkward formulation
seen in Table 6. More nuanced relationships between ground literals could also be supported by
encouraging the use the so-called eventuality notation as seen in some of the human-authored def-
initions in Table 8, e.g., in intended_use and not_achieve. These representational choices are often
associated with the particular styles of certain well-known knowledge engineering researchers, and
it may be possible to mimic these styles in LLMs with careful prompting with illustrative examples.
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7. Conclusions

In the current era of rapid progress in LLMs it is temping, for many, to see the technologies of
artificial intelligence as divided into those of the past versus those of the present. First-order logic,
with its roots in the 18th and 19th-century work of philosophers including Gottlob Frege, Bertrand
Russell, and Ludwig Wittgenstein, certainly would be cast into the pile of the past. This somewhat
divisive view persists despite the pervasive logical foundations of nearly all of contemporary com-
putational infrastructure, from relational databases, boolean satisfiability solvers, and programming
language compilers, to the very cores of our CPUs. Instead, it may be more productive to view
LLMs as a powerful new addition to the suite of established tools available to us across the com-
putational sciences, including cognitive systems research. As with other tools in this suite, many
advances can be realized by combining the strengths of different tools in novel ways.

In this paper, we investigate the role that LL.Ms might play in facilitating the use of logic-based
formalisms in our computational models of cognitive systems. The contribution of this paper is to
advance an LLLM-enabled methodology for generating first-order logic representations of complex
narrative texts, while inventing the formal vocabulary used in these representations incrementally as
needed. Our selected text, William Shakespeare’s Venus and Adonis, further demonstrates that this
method is applicable to difficult and lengthy literary works, yielding a formal vocabulary that veers
in scope toward the thematic concerns of the source text. Our quantitative and qualitative analyses
show that the method is successful in reusing formalisms invented earlier in the analysis. By sort-
ing the LL.M-authored vocabulary into an established taxonomy of foundational representational
areas, we see substantial overlap in the conceptual breadth of representations. By comparing LLM-
authored vocabulary with well-crafted formalisms in areas related to commonsense psychology, we
see some similarity in the representational choices that are made. This investigation also highlights
some of the limitations of our method, particularly with respect to its inefficient use of independent
and decontextualized functions, and the lack of multi-literal representations of simple sentences.
To address these limitations, we proposed new directions for future research on a dialogue-oriented
formalization methodology, along with enhanced prompting that encourages the more expressive
and stylistic representational choices of knowledge engineering researchers.

We view this investigation as a further step toward fully-automated logical formalization of
both foundational theories and specialized domain theories, to include the axiomatic definitions and
inference rules necessary to support automated (logical) reasoning of various sorts. With LLMs
working to bridge the gap between natural language and logical formalisms, we also see potential
applications in the future where logic-based reasoning, e.g., automated deduction and abduction, is
more seamlessly integrated into the dialogue interfaces and agentic workflows that are pervasive in
today’s applications of LLMs.
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