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Abstract

The ability to infer intentions, emotions, and other un-
observable psychological states from people’s behavior
is a hallmark of human social cognition, and an essen-
tial capability for future Artificial Intelligence systems.
The commonsense theories of psychology and sociol-
ogy necessary for such inferences have been a focus
of logic-based knowledge representation research, but
have been difficult to employ in robust automated rea-
soning architectures. In this paper we model behavior
interpretation as a process of logical abduction, where
the reasoning task is to identify the most probable set
of assumptions that logically entail the observable be-
havior of others, given commonsense theories of psy-
chology and sociology. We evaluate our approach us-
ing Triangle-COPA, a benchmark suite of 100 challenge
problems based on an early social psychology experi-
ment by Fritz Heider and Marianne Simmel. Common-
sense knowledge of actions, social relationships, inten-
tions, and emotions are encoded as defeasible axioms
in first-order logic. We identify sets of assumptions
that logically entail observed behaviors by backchain-
ing with these axioms to a given depth, and order these
sets by their joint probability assuming conditional in-
dependence. Our approach solves almost all (91) of the
100 questions in Triangle-COPA, and demonstrates a
promising approach to robust behavior interpretation
that integrates both logical and probabilistic reasoning.

Introduction
In an early study of human social perception, psychologists
Fritz Heider and Marianne Simmel (1944) presented sub-
jects with a short animated film depicting the movements of
two triangles and a circle in and around a box with a hinged
opening. Asked what they saw in the film, subjects each re-
sponded with similar narratives that anthropomorphized the
moving shapes as intentional characters with beliefs, goals,
emotions, and social relationships. The simplicity of the film
was in sharp contrast with the richness of the subjects’ nar-
ratives, highlighting the role of knowledge and personal ex-
perience in the process of interpretation. In his influential
book, The Psychology of Interpersonal Relations (1958),
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Heider argued that the interpretation of intentional behav-
ior was driven by commonsense theories of psychology and
sociology, and was the basis of human social interaction.

Artificial Intelligence researchers have sought to model
people’s abilities for commonsense social reasoning in
software-based cognitive systems, directing their efforts to-
ward three fundamental challenges. First, researchers have
worked to represent commonsense knowledge of human
psychology and social interaction as formal theories for use
in automated reasoning systems. Steady progress contin-
ues on the logical formalization of commonsense knowl-
edge, both in the formalization of specific domain theories
of commonsense psychology and sociology (Davis and Mor-
genstern 2005; Gordon and Hobbs 2011) as well as gen-
eral commonsense knowledge (Panton et al. 2006). Sec-
ond, other researchers have focused on the challenge of de-
signing the cognitive architectures for automated reason-
ing, and have increasingly worked to apply these architec-
tures to social reasoning problems (Meadows, Langley, and
Emery 2014; Pynadath, Rosenbloom, and Marsella 2014).
The third challenge is the evaluation of automated social rea-
soning systems, which has received comparably little atten-
tion. Natural-language commonsense reasoning evaluations
are becoming increasingly popular (Levesque, Davis, and
Morgenstern 2012; Roemmele, Bejan, and Gordon 2012),
but the gap between formal theories of social interaction and
the lexical semantics of these evaluations make them dif-
ficult to use for benchmarking current approaches. Needed
are integrative approaches that incorporate rich representa-
tions of commonsense theories in practical reasoning sys-
tems that demonstrate their effectiveness in comprehensive
evaluations.

In this paper we describe our efforts to overcome all three
challenges (representation, reasoning, and evaluation) in a
computational model of behavior interpretation using com-
monsense theories of psychology and sociology. To make
progress in each of these areas, we restrict the scope of the
reasoning challenge to the domain of Heider and Simmel’s
original film, depicting the actions of two triangles and a
circle around a box with a hinged door. Although this narra-
tive setting is constrained, interpreting the behavior of mov-
ing shapes in a humanlike manner required us to formal-
ize hundreds of commonsense axioms concerning actions,
intentions, emotions, and social relationships, among oth-



ers. Using these axioms, we identify possible interpretations
of action sequences via logical abduction, backchaining to
distinct sets of assumptions that logically entail the obser-
vations. We then order these sets of assumptions by com-
puting their joint probability assuming conditional indepen-
dence. We evaluate our approach using the Triangle-COPA
set of 100 challenge problems, each one describing a sit-
uation in the domain of the original Heider-Simmel film.
Our approach solves almost all (91) of the 100 questions
in Triangle-COPA, and demonstrates a promising approach
to robust behavior interpretation that integrates both logical
and probabilistic reasoning.

Triangle-COPA
Several AI researchers have viewed Heider and Simmel’s
original 1944 film as a challenge problem, where the ob-
jective is to construct software systems capable of generat-
ing interpretations similar to those of Heider and Simmel’s
subjects. Thibadeau (1986) takes a symbolic approach, rep-
resenting the coordinates of each object in each frame of
original film, which are matched to defined action schemas,
such as opening the door or going outside the box. Pautler
et al. (2011) follows a related approach, beginning with ob-
ject trajectory information from an animated recreation of
the Heider-Simmel film. An incremental chart parsing algo-
rithm with a hand-authored action grammar is then applied
to recognize character actions as well as their intentions.

These attempts highlight several problems for the use
of the original Heider-Simmel film as a challenge problem
by automated reasoning researchers. First, any system must
overcome the difficult challenge of recognizing actions in
the visual scenes, for example by first extracting quantitative
trajectory information from the image data. Contemporary
gesture recognition methods may be suitable for this task,
using models trained on copious amounts of annotated ex-
amples. However, the effort involved in applying these tech-
niques shifts research attention away from the central au-
tomated reasoning task of interpretation. Second, the orig-
inal Heider-Simmel film provides a compelling input as a
challenge problem, but the correct output is unspecified. Pre-
cisely because the input is “open to interpretation” it is dif-
ficult to compare the relative performance of two competing
approaches, or even of the same approach as it develops over
time.

The “Triangle Choice of Plausible Alternatives”
(Triangle-COPA) set of one hundred challenge problems is
a recent attempt to overcome these two problems with the
original Heider-Simmel movie (Maslan, Roemmele, and
Gordon 2015)1. Each of the one hundred questions in this
problem set describes, in English and in first order logic,
a short sequence of events involving the characters of the
original Heider-Simmel film: two triangles and a circle
moving around a box with a hinged opening. This descrip-
tion ends with a question that requires the interpretation of
the action sequence, and provides a choice of two possible
answers, also in both English and logical form. The task
is to select which of the two options would be selected

1Available at https://github.com/asgordon/TriangleCOPA

by a human, where the correctness of the choice has been
established by perfect agreement among multiple human
raters. Three examples of Triangle-COPA questions are as
follows:
• Question 44: The triangle opened the door, stepped out-

side and started to shake. Why did the triangle start to
shake?

(and (exit’ E1 LT) (shake’ E2 LT) (seq E1 E2))

a. The triangle is upset.
(unhappy’ e3 LT)

b. The triangle is cold.
(cold’ e4 LT)

• Question 58: A circle and a triangle are in the house and
are arguing. The circle punches the triangle. The triangle
runs out of the house. Why does the triangle leave the
house?

(and (argueWith’ E1 C LT) (inside’ E2 C)

(inside’ E3 LT) (hit’ E4 C LT) (exit’ E5 LT)

(seq E1 E4 E5))

a. The triangle leaves the house because it wants the circle
to come fight it outside.

(and (attack’ e6 C LT) (goal’ e7 e6 LT))

b. The triangle leaves the house because it is afraid of be-
ing further assaulted by the circle.

(and (attack’ e8 C LT) (fearThat’ e9 LT e8))

• Question 83: A small triangle and big triangle are next to
each other. A circle runs by and pushes the small triangle.
The big triangle chases the circle. Why does the big trian-
gle chase the circle?

(and (approach’ E1 C LT) (push’ E2 C LT)

(chase’ E3 BT C) (seq E1 E2 E3))

a. The big triangle is angry that the circle pushed the small
triangle, so it tries to catch the circle.

(angryAt’ e4 BT C)

b. The big triangle and circle are friends. The big triangle
wants to say hello to the circle.

(and (friend’ e5 BT C) (goal’ e6 e7 BT)

(greet’ e7 BT C))

As a benchmark set of challenge problems for automated
reasoning systems, Triangle-COPA has a number of attrac-
tive characteristics. By providing first-order logic represen-
tations as inputs and outputs, Triangle-COPA focuses the ef-
forts of competitors specifically on the central interpretation
problem. At the same time, it places no constraints on the
particular reasoning methods that are actually used to select
the correct answer, affording comparisons between systems
that use radically different knowledge resources and reason-
ing algorithms. The relational vocabulary of Triangle-COPA
literals are fixed (see Maslan et al. 2015), but the semantics
of these predicates are not tied to any one ontology or the-
ory. The correct answers of Triangle-COPA are randomly
sorted, so the quality of any given system can be gauged
between that of random guessing (50%) and human perfor-
mance (100%).

Etcetera Abduction
Triangle-COPA problems can be viewed as a choice between
two alternative interpretations of a sequence of observable



actions. Hobbs et al. (1993) demonstrated that interpreta-
tion in natural language processing can be cast as problems
of logical abduction, and solved using automated abductive
reasoning technologies. Abduction, as distinct from logical
deduction or induction, is a form of logical reasoning that
identifies a hypothesis that, if it were true, would logically
entail the given input. Abduction is not a sound inference
mechanism in standard first-order logic; asserting the truth
of an antecedent given an observable consequent is a logical
fallacy, “affirming the consequent.” Still, automated abduc-
tive reasoning is a natural fit for many commonsense reason-
ing problems in artificial intelligence (Ng and Mooney 1992;
Bridewell and Langley 2011; Meadows, Langley, and Emery
2014).

Automated abductive reasoning requires two mecha-
nisms: a means of generating sets of hypotheses that en-
tail the input, and a scoring function for the preferential or-
dering of these hypotheses. Hobbs et al. (1993) described
“Weighted Abduction,” where hypotheses are generated by
backchaining from the given input using the implicature
form of knowledge base axioms, unifying literals across dif-
ferent antecedents wherever possible. The process generates
an and-or proof graph similar to that created when search-
ing for first-order proofs by backchaining, but where every
solution in the and-or graph identifies a set of assumptions
that, if true, would logically entail the given observables.
Weighted Abduction orders these hypotheses by comput-
ing the combined cost of all assumed literals (those with-
out justification), through a mechanism of propagating ini-
tial costs to antecedents during backchaining. Maslan et al.
(2015) demonstrated how Weighted Abduction can be used
to solve Triangle-COPA problems by searching for the least-
cost set of assumptions that entailed the literals in one of the
two alternatives.

In our own work, we devised a new probabilistic reformu-
lation of Weighted Abduction, which we call Etcetera Ab-
duction. Several researchers have previously pursued prob-
abilistic reformulations of Weighted Abduction, eschewing
the use of ad-hoc weights for probabilities that might be
learned from empirical data. Ovchinnikova et al. (2013)
and Blythe et al. (2011) describe two recent probabilistic
reformulations, each casting the and-or proof graph as a
Bayesian network whose posterior probabilities can be cal-
culated using belief propagation algorithms for graphical
models. These efforts help to position abductive reasoning
among current approaches to uncertain inference, and to take
advantage of recent advances and tools for reasoning with
Markov Logic networks (Richardson and Domingos 2006).
However, a simpler formulation of probabilistic abduction
may be more appropriate when the task is only to rank pos-
sible hypotheses.

As in other probabilistic reasoning tasks, the calculation
of the joint probability of a set of events is trivially easy if
we assume that they are all conditionally independent: the
joint probability of the conjunction is the product of their
prior probabilities. If we know the prior probabilities of all
assumed literals in an abductive proof (those without jus-
tification), then the naive estimate of their joint probability
is simply their product (Poole 1991). This calculation can

be applied to any solution in an and-or graph created by
backchaining from the given input, giving us a convenient
means of ranking hypotheses.

This approach allows us to use standard first-order logic
and familiar technologies of lifted backchaining instead of
belief propagation in graphical models. However, by using
logical inference (rather than uncertain inference) we re-
quire that the consequent of an implication is always true
when the antecedent holds, where the probability of the con-
sequent given the antecedent is always one. Hobbs et al.
(1993), building on McCarthy’s (1980) formulation of cir-
cumscription, describes how defeasible first-order axioms
can be authored by the inclusion of a special etcetera literal
(etc) as a conjunct in the antecedent. These literals are con-
structed with a unique predicate name that appears nowhere
else in the knowledge base, and therefore can only be as-
sumed (via abduction), never proved. The arguments of this
predicate are all of the other variables that appear in the ax-
iom, restricting its unification with other etcetera literals of
the same predication that may be assumed in the proof.

The probabilities of etcetera literals are straightforward if
we interpret them as being an unspecified conjunction of all
of the unknown factors of the world that must also be true
for the antecedent to imply the consequent. Etcetera literals
are true in exactly the cases where the remaining antecedent
literals and the consequent are all true. As such, their prior
probabilities are equal to the conditional probability of the
consequent given the remaining conjuncts in the antecedent.
Where there are no remaining conjuncts (a solitary etcetera
literal implies the consequent), the prior probability of the
etcetera literal is exactly equal to the prior probability of the
consequent.

Commonsense Axioms
We hand-authored 136 axioms to encode commonsense
knowledge in the domain of the Triangle-COPA question
set, targeting the specific inferences necessary to infer the
correct alternative for each question. Each of these axioms
were written as first-order definite clauses in implicature
form, and included a unique etcetera literal in each an-
tecedent. For convenience, we encoded the prior probability
of each etcetera literal as its own first argument, as a numeric
constant. To encode the prior probabilities of predications
in the Triangle-COPA domain, we authored an additional
116 axioms (one for each domain predicate) where the an-
tecedent consisted of a solitary etcetera literal, again with its
prior probability as the first argument. We expect that in the
future it may be possible to automatically learn these proba-
bilities from empirical data. However, in this work we assign
probabilities to etcetera literals manually via commonsense
intuition, knowing full well that such estimations may be
systematically biased (Kahneman and Tversky 1982).

Each of the 136 commonsense axioms follows a com-
mon scheme, providing some possible explanation (the an-
tecedent) for why a particular literal (the consequent) might
be true. Three-fourths of the 136 commonsense axioms en-
coded possible explanations for observable actions, offering
some reason that a given action might have been observed.



For example, four axioms provide possible reasons why one
character would be chasing another:

• Chase 1: Maybe they are playing tag
(if (and (playWith’ e1 x y)

(etcChase1 0.2 e1 x y))

(chase’ e x y))

• Chase 2: Maybe one is angry at the other
(if (and (angryAt’ e1 x y)

(etcChase2 0.2 e1 x y))

(chase’ e x y))

• Chase 3: Maybe one is trying to rob the other
(if (and (goal’ e1 e2 x)

(rob’ e2 x y)

(etcChase3 0.3 e1 e2 x y))

(chase’ e x y))

• Chase 4: Maybe one is trying to scare the other
(if (and (goal’ e1 e2 x)

(afraid’ e2 y)

(etcChase4 0.5 e1 e2 x y))

(chase’ e x y))

Each of these four axioms provides a piece of some over-
all explanation for a situation that includes chasing, where
the etcetera literals in each axiom each indicate the likeli-
hood that the consequent is implied by the remaining con-
juncts in the antecedent. Accompanying these four would be
an additional axiom to encode the prior probability of ob-
serving such a chase:

• Chase 0: Maybe the conditions are right for chasing
(if (etcChase0 0.01 e x y)

(chase’ e x y))

Note that despite its low probability (0.01), etcChase0

would be the most-probable assumption that logically en-
tailed the observation of one character chasing another, in
the absence of other observations. While the prior for this
assumption is less than those in the other four axioms, the
probability of each of the other antecedents will also be
a factor in their probability estimates, lowering their joint
probability. It is only in combination with additional evi-
dence that these other four explanations could be part of the
most probable interpretation, where these antecedents could
be unified with those of other observations as a common fac-
tor in the joint probability estimate.

The remaining commonsense axioms provide possible
explanations for literals that cannot be directed observed
(i.e. they appear as antecedents an action axiom like those
above). These include possible explanations for emotional
states (anger, excitement, relief), abstract social actions
(helping, defending, disciplining), perceptions (hearing, see-
ing). The antecedents of these axioms typically include men-
tal actions, emotions, and social relationships, most of which
have no further explanations in the knowledge base.

Notably, this set of axioms, hand-authored specifically for
the Triangle-COPA question set, includes very few represen-
tations for concepts that have traditionally been the focus
of formal knowledge representation research, such as time,

space, sets, scales, and physics. Causality is only implic-
itly represented in the schema of each axiom, where the an-
tecedent is seen as a causal explanation for the consequent.

Solving Triangle-COPA Problems
To automatically solve Triangle-COPA questions using our
hand-authored set of axioms, we implemented Etcetera Ab-
duction and used it to determine which of the two alterna-
tives for each question was entailed by a more probable set
of assumptions. Our software implementation2 accepts the
knowledge base and a conjunction of observations as input,
and generates all possible sets of assumptions that logically
entail the given observations, ranked by their joint probabil-
ity estimate assuming conditional independence. This search
begins by generating and-or trees of entailing assumptions
for each input literal by backchaining on knowledge base
axioms to a specified depth (an input parameter), where the
set of solutions in the tree each identify a set of etcetera lit-
erals that logically entail one observed literal. The Cartesian
product of these sets-of-sets is then computed, identifying
sets of assumptions that logically entail all of the observed
conjuncts. For each of these assumption sets, we then iden-
tify all possible ways that etcetera literals could be unified
by substitutions of universally quantified variables. For each
candidate, we compute the joint probability as the product
of each etcetera literal’s prior probability, and output a rank-
ordered list.

First-order logical abduction is a quintessential combina-
torial search problem, leaving few opportunities for opti-
mization. We avoid some of the costs of computing all pos-
sible unifications by only considering assumption sets if the
best-case joint probability would place it into a running n-
best list, where n is an additional input parameter. By keep-
ing the backchaining depth parameter low (e.g. below 5) and
the n-best list short (e.g. 10 solutions), our implementation
is able to exhaustively search through millions of assump-
tion sets for each Triangle-COPA problem in seconds.

Each of the ordered n-best assumption sets logically en-
tail the given observations. That is, asserting the truth of
the etcetera literals and exhaustively forward-chaining on
knowledge base axioms will produce the input literals as
logical consequents. Also entailed are all of the literals that
constitute a structured interpretation, namely the intermedi-
ate inferences between assumptions and the given observa-
tions the resulting proof-graph. We use these intermediate
inferences as the basis for selecting between alternatives in
the Triangle-COPA questions. In some cases, the literals of
correct alternative to a Triangle-COPA problem are a subset
of the intermediate inferences entailed by the most-probable
interpretation of the question’s given literals. In other cases,
the correct answer can be found further down the n-best list,
or not at all. Our implementation answers Triangle-COPA
questions by finding both alternatives in the n-best list, and
selecting the one with a higher probability.

Figure 1 shows an example proof-graph for Triangle-
COPA question 83 (above). Here ovals represent the set of
assumptions (etcetera literals), displayed only as their prior

2Available at https://github.com/asgordon/EtcAbductionPy
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(attack' $2 C LT)

(angryAt' $182 BT C)

(like' $196 BT LT)

(approach' E1 C LT) (push' E2 C LT) (chase' E3 BT C) (seq E1 E2 E3)

Figure 1: The most-probable proof of Triangle-COPA question 83.

probabilities. Rectangles represent entailed inferences, pro-
duced by exhaustively forward-chaining on knowledge base
axioms, represented using arrows. Arguments with dollar
signs (e.g. $196) represent Skolem constants that ground
universally quantified variables. The four literals at the bot-
tom, enclosed by a rectangle, are the given observations of
the question.

Four commonsense axioms are employed in this interpre-
tation. When someone has the goal to attack someone else,
he will approach her (Pr=0.3), and he will push her (Pr=0.1).
Therefore, we assume that the Circle (C) has the goal of at-
tacking the Little Triangle (LT). When someone is angry at
someone else, he will chase her (Pr=0.2). Therefore, we as-
sume that the Big Triangle (BT) is angry at the Circle (C).
When someone likes a second person that is attacked by a
third person, he will be angry at the third person (Pr=0.9).
Therefore, we assume that the Circle (C) attacked someone
that the Big Triangle (BT) likes. Substituting variables via
unification, we can assume that the person the Big Triangle
(BT) likes is the Little Triangle (LT). In this interpretation,
four literals are entailed by solitary etcetera literals (the goal,
the attack, the liking emotion, and the sequence of events),
each with their own prior probabilities (Pr=[0.5, 0.1, 0.2,
1.0]). The joint probability of this interpretation assuming
conditional independence of etcetera literals is the product
of these priors (Pr=0.000054). This is the most-probable in-
terpretation for question 83, and it logically entails the cor-
rect answer: the Big Triangle (BT) is angry at the Circle (C).

Results
Our approach correctly solves 91 of the 100 Triangle-COPA
problems. In 56 cases, the correct answer is entailed in the
most-probable interpretation, not just higher on the n-best
list than the incorrect alternative. A backchaining depth of 3

was sufficient in all but 1 question, where a depth of 4 was
necessary. An n-best list length of 10 was sufficient in all
but 1 question, where a length of 27 was necessary.

When assessing this result, it is important to remember
that Triangle-COPA was designed as a development test
set, not as a held-out test set for use in competitive eval-
uations. Our strong performance on this set demonstrates
that Etcetera Abduction is a viable approach, but our success
owes much to the labor of hand-crafting the axioms neces-
sary to solve these specific questions. Accordingly, the most
interesting findings are in the nine incorrect answers, where
we could not find a straightforward means of inferring the
correct alternative using our approach.

Seven of these nine incorrect answers involved the emo-
tional consequences of the interpreted situation, not the sit-
uation itself (questions 54, 65, 72, 79, 81, 89, and 93). For
example:
• Question 65. A circle and small triangle are hugging. A

big triangle approaches and pulls the small triangle away.
How do the circle and small triangle feel? (answer: un-
happy).

The necessary commonsense knowledge is not difficult to
articulate as an axiom: people might be unhappy when
forcibly separated from their friends. However, this knowl-
edge does not help explain an observed event appearing in
the logical representation, one that would enable the system
to backchain on this axiom for use in an interpretation. The
only indication that the emotional consequence is of con-
cern in this problem is in its English-language description,
not in the logical formalization authored by Maslan et al.
(2015). One solution would be to explicitly encode the ques-
tion as a observation to be interpreted, analogous to the way
that Answer literals are used in resolution-based question-
answering systems (Green 1969), for example by asserting



that the Circle and Little Triangle feel something and letting
abduction resolve the ambiguity.

Two of the nine incorrect answers (questions 100 and 93,
again), involve the interpretation of inaction, which is also
not explicitly represented in the question formalizations. For
example:

• Question 100. A circle knocks on the door. A triangle goes
to the door, but hesitates to open it. Why does the trian-
gle hesitate to open the door? (answer: the triangle feels
conflicted).

Here the key event is that the triangle hesitated to open the
door, but the represented sequence events for this question
ends with the last observable action: the triangle approaches
the door. We believe that this problem will be harder to
solve than the emotion consequent problems (above), be-
cause the triangle’s hesitation is itself part of the interpreta-
tion of the situation. However, if the question explicitly rep-
resented the triangle’s hesitation, it could be easily explained
with the commonsense knowledge that conflicted feelings
lead to hesitation in action.

One question (number 68) was simply too large for our
system to handle. The unique qualities of this problem yield
a combinatorial search space that is too large to explore in
a reasonable amount of time (hours) using our implementa-
tion.

• Question 68. A big triangle, small triangle, and circle are
in the house. The big triangle and the circle each kiss the
small triangle, wave, and then leave the room. How are
the shapes related? (answer: the big triangle and the circle
are the parents of the small triangle)

The conceptual knowledge required to solve this problem
is rich, but not insurmountable: people kiss and wave when
they depart, married couples depart together, parents visit
the homes of their (adult) children, etc. However, combin-
ing this knowledge requires backchaining with some rea-
sonable depth (maybe 4 or 5 steps). Additionally, the given
observations in this problem are represented by 11 literals,
the most of any Triangle-COPA problem. Worse still, five of
these literals have the same predicate as one of the remaining
six, leading to explosions in the sets of possible unifications
that must be considered when searching for a minimal (and
most-probable) set of assumptions. Solving this problem in
reasonable time will require more sophisticated methods for
optimizing the search than used in our implementation of
Etcetera Abduction.

Discussion
Future AI systems will require a robust capability for in-
ferring the plans, goals, beliefs, and emotional states of the
humans with which they interact. In this paper we demon-
strate a solution to the mind-reading problem in a limited
domain, based on an influential film created by social psy-
chologists Fritz Heider and Marianne Simmel. The 100 chal-
lenge problems in the Triangle-COPA set involve only three
characters and a fixed set of disambiguated actions, but re-
quire a rich capacity for commonsense reasoning to select

correct answers. The requisite knowledge base contains hun-
dreds of hand-authored axioms and probability estimates for
everyday concepts in commonsense psychology and sociol-
ogy, and provides a template for future knowledge bases that
target open-domain commonsense reasoning.

Our approach is to view the reasoning task as an inter-
pretation problem, and to follow Hobbs et al.’s (1993) pro-
posal for solving interpretation problems with logical ab-
duction. Logic-based approaches are common in several ar-
eas of AI, but evaluation-driven research in recent years has
favored machine learning approaches, particularly where
gold-standard training data is abundant. For many problems,
it is easier to learn the implicit correlations between input
features and output labels than to articulate this knowledge
as explicit rules. Triangle-COPA provides no such training
data, and we doubt that such a data set could be curated of
sufficient size and inter-rater agreement, precisely because
the output labels are open to interpretation. Hand-authoring
the requisite logical axioms was laborious, but tractable.

Our probabilistic formulation of logical abduction,
Etcetera Abduction, greatly facilitated the authoring of ax-
ioms. The necessary quantitative information could be in-
tuitively understood as prior and conditional probabilities
associated with etcetera literals. Using logical inference
(rather than probabilistic inference) and assuming condi-
tional independence of etcetera literals, we gain some of the
benefits of contemporary probabilistic reasoning approaches
without giving up on the useful notions of logical entailment,
unification of quantified variables, and first-order model the-
ory. Likewise, by only backchaining on first-order definite
clauses, we avoid the brittleness of resolution theorem prov-
ing and other logic-based automated reasoning architec-
tures, with respect to incomplete or contradictory formaliza-
tions in the knowledge base. Etcetera Abduction only iden-
tifies sets of assumptions that logically entail the given ob-
servations, whatever the state of the knowledge base.

At its core, logical abduction is a search through the space
of combinations of associations, looking for the most parsi-
monious sets of antecedents for each of the given input liter-
als. First-order logical abduction is a quintessential combi-
natorial search problem, requiring both the enumeration of
a Cartesian product of sets of justifications and the possible
ways that each resulting set could be reduced through uni-
fication. From an engineering perspective, we see the need
for optimizations and approximate solutions that will enable
the use of logical abduction with larger sets of input liter-
als, larger knowledge bases, and greater depth of backchain-
ing. From a cognitive science perspective, we wonder if the
human brain engages in an analogous search when faced
with commonsense interpretation problems. Do we uncon-
sciously explore the space of combinations of associations
to find the most parsimonious interpretation of our percep-
tions?
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