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Abstract 
Music and language are two human activities that fit well 
with a traditional notion of creativity and are particularly 
suited to computational exploration. In this paper we will 
argue for the necessity of syntactic processing in musical 
applications. Unsupervised methods offer uniquely 
interesting approaches to supporting creativity.  We will 
demonstrate using the Constituent Context Model that 
syntactic structure of musical melodies can be learned 
automatically without annotated training data. Using a 
corpus built from the Well Tempered Clavier by Bach we 
describe a simple classification experiment that shows the 
relative quality of the induced parse trees for musical 
melodies. 

Introduction   
Creativity is a difficult concept to define precisely, yet we 
all have an intuitive feeling for what is and is not creative. 
Although creativity is used to describe innovative and 
unique methods of accomplishing just about any task, the 
arts are most prototypically associated with creativity and 
the creative process. Music and language are two human 
activities that tie into this traditional notion of creativity 
well, and are particularly suited to computational 
exploration for several reasons. The ubiquity of these 
expressions and the ability for most people to have at least 
some limited experience or ability in these areas are key 
aspects that make these topics so appealing for research. 
Another reason is the relative ease in which basic units of 
“meaning” can be represented in various machine-readable 
formats. Language and music also share many 
characteristics that could allow key insights from one 
domain to shed light on the other. 
 There are many relationships that can be found between 
music and language dating as far back as Socrates, Plato 
and Aristotle. Dobrian (1992) elaborates three categories 
that are particularly recurrent in this discussion. The most 
relevant to this work is the concept of music as a language 
itself. When viewed in this way it is natural to apply 
linguistic theories of syntax and semantics to try to analyze 
and derive meaning from music. Dobrian (1992) ultimately 
argues that music is not a language in the same way 
English is, for example, because there are simply too many 
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sonic elements that do not have a culturally defined 
meaning. However, even in this restricted view he believes 
that music contains many linguistic elements including 
symbols and grammar that allow linguistic analysis to be 
enlightening. 
 One of the more specific relationships between music 
and language is the natural ability to recursively group 
primitive elements together to form larger and larger units 
organized in a hierarchical structure. Syntax, or grammar, 
is a long and actively researched topic in the field of 
Linguistics that has been dedicated to these structures. 
Music does not have the rich history that Linguistics does 
in the area of syntax, but some work has been done, most 
notably by Lerdahl and Jackendoff (1983) and by 
Steedman (1996). There is even evidence that some of the 
syntactic processing for both types of data are processed in 
the same region of the brain (see, for example, Patel 2003), 
although not necessarily in the same way. Over the last 
decade syntactic processing has permeated nearly all 
aspects of natural language processing topics. Not only has 
the use of syntactic information directly improved the 
results of many traditional tasks, it has also enabled more 
complex systems to be built that were not possible without 
syntactic information.  
 Although, the use of syntactic information in the musical 
composition process and in music analysis is frequently 
discussed and often considered fundamental, there has 
been relatively little work on integrating this information 
into automated approaches to music analysis and 
generation. Two examples are the computer 
implementations of Lerdahl and Jackendoff’s General 
Theory of Tonal Music (GTTM) by Hirata and Matsuda 
(2003), and by Hamanaka, Hirata, and Tojo (2006). 
However,  due to ambiguities in the GTTM rules, the 
programs require human intervention to parse an input.  
 Hierarchical processing has also been integrated into 
some computing interfaces for music composition. 
Tuneblocks explicitly makes use of hierarchical units for 
teaching composition techniques to beginning and novice 
composers (Bamberger, 1999). Concepts of hierarchical 
construction have also been implemented in the maquette 
in OpenMusic1. Few automatic methods for generating 
music actually consider such hierarchical structures. Just as 
using syntactic representations has been useful in human 
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guided learning processes, syntactic information could be 
useful for a host of computational music applications.   
 One starting point for developing automatic parsing 
techniques for music would be to adapt successful 
techniques from the language community to music. The 
most successful language parsing techniques require the 
development of large annotated corpora, which is riddled 
with difficulties. Early work in linguistic syntax analysis 
also showed that hand authored grammars are extremely 
difficult to create, debug and maintain. Until recently the 
quality of automatically learned grammars was found to be 
insufficient for even the most rudimentary tasks. Recent 
progress in unsupervised language parsing techniques have 
produced results that are much more competitive with state 
of the art systems, and may provide the ability to identify 
reasonable syntactic structure in music. 
 In this paper we argue for the necessity of syntactic 
processing in musical applications, particularly for two key 
aspects of creativity: enabling human creativity and being 
innately creative. We propose that unsupervised methods 
offer a uniquely interesting solution to both aspects. To 
demonstrate that these techniques are not just theoretically 
possible, we will describe how an unsupervised parsing 
technique developed by Klein and Manning (2002) for use 
with language can be used in the musical domain to parse 
musical melodies. In lieu of an annotated corpus of 
melodies, we describe a simple experiment that estimates 
the quality of the learned syntactic structures and shows 
their plausibility and promise for future research. 

Computational Creativity 
There are two main ways in which computers can play a 
significant role in the creative process of musical 
innovation. The first is by enabling the human to be more 
creative through facilitating mundane or arduous tasks not 
directly focused on the idea, yet are typically necessary for 
completing the process. For example, a musical score 
editor (e.g., Musicease2 or Sibelius3) can greatly ease the 
creation and management of writing formal music notation. 
This can allow more focus and energy to be dedicated to 
the musical ideas and themes, in much the same way a 
word processor allows writers to spend more time on the 
content, and less time worrying about desktop publishing. 
The second way a computer can play a role in the creative 
process is for the computer itself to be creative. This 
second way is more alluring from an Artificial Intelligence 
point of view, however it is much more difficult to define 
exactly what it might mean. 
 Defining how a computer can be creative is a thorny 
topic not easy to resolve. However, there are at least two 
possibilities that are immediately apparent. One could 
determine the creativity of a system analogous to the 
Turing test by using human judges to compare the system’s 
output to that of a human. Conversely, one could also 
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determine the creativity of the system based on the process 
it uses to derive its output. 
 Having humans judge the level of creativity of a 
machine’s output poses two significant theoretical 
problems. Although we would like to test how creative the 
machine is, by using humans we are in a sense testing how 
creative those people are in ascribing meaning to the 
output. Depending on the background of the person, their 
experiences and knowledge of the genre any computer-
generated material may take on wildly different 
interpretations for different people, or even the same 
person in different circumstances. While this may be useful 
for inspiring new ideas in humans this is not adequately 
addressing the question “is the computer creative?” The 
other concern is epistemic. Even if our human judges were 
able to agree on an objective common knowledge for 
grading creativity, it would limit the performance of the 
machine to that of the human intellect. Although the 
human intellect is not likely to be the limiting constraint in 
the near future, it is not wise to build such a limitation into 
the definition of creativity. Finally, introspection about the 
creation should not just inspire us that it is good but why it 
is good, and afford the possibility of learning something 
beyond our own biases and capabilities. 
 Computational systems can embody these two types of 
creative processes in a multitude of ways. At one extreme 
are deterministic rule based systems, and completely 
unsupervised learning agents at the other end. Rule based 
systems are more naturally aligned with enabling humans 
to be more creative for several reasons. Often, as in the 
case of a musical score editor, the arduous tasks are well 
defined, and a series of rules can be written to alleviate 
much of the burden. Also, their behavior is typically 
expected or predictable, which can be beneficial for many 
applications, although the system’s predictability usually 
subverts the possibility of its being creative. Rule based 
systems are not always predictable however. Wolfram 
tones4 are a good example of how a seemingly simple rule 
can lead to unexpected emergent properties. Dabby (1996) 
also describes a music generation system that transforms 
human composed pieces in unpredictable and interesting 
ways using a chaotic mapping. By manipulating the initial 
conditions, one can produce variations that closely 
resemble the original piece or ones that deviate so much 
they become unrecognizable. These techniques can be used 
as novel methods of creating music but they are also useful 
in inspiring new ideas through the combination or 
recombination of sounds one may have never imagined.  
 Although the derivation of these deterministic systems is 
creative and they certainly inspire creativity in humans it is 
still difficult to say they are being creative. It seems more 
natural to align systems capable of learning with the act of 
being creative. Pachet’s Continuator (2003) using Markov 
models, or the family of improvisation systems based on 
Factor Oracles described in Assayag and Dubnov (2004), 
Assayag et. al. (2006), and François, Chew and Thurmond 
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(2007) are recent examples of this type of model. Assayag 
et al. (2006) also describes a range of other musical 
improvisation systems based on statistical learning 
techniques. In these cases the act of creation is not the 
direct application of a known set of procedures, regardless 
of how unknown the output may appear, but is dependent 
on the input it is given and its ability to distinguish useful 
patterns. 
 Although rule based systems and learning systems tend 
to diverge in their respective strengths concerning the two 
types of computational creativity, there is no hard and fast 
line. For example Voyager (see George Lewis, 2000) is an 
early example, created in the 1980s, of a primarily rule 
based improvisation system that has 64 independent voices 
that can adapt to each other, and up to as many as two 
human performers. Similarly, learning based approaches 
often facilitate our own creativity, for example through 
simple actions like automatic text, or note, completion.  
 Our goal is to show that the unsupervised parsing 
methods described in this paper can fit within both aspects 
of computational creativity discussed in this section. The 
factor oracle and Markov models, as used in the 
improvisation systems mentioned above, can also be seen 
as an instance of unsupervised parsing, but without 
grammar induction. However, the use of these models has 
been motivated by their ability to train and execute in real 
time, and not necessarily for providing deep or structural 
analysis. Without these restrictions we will examine some 
other possible uses. 

Parsing Music as Language 
The widespread availability of massive amounts of 
computational power at all levels of devices from personal 
computers to embedded devices has produced an explosion 
of computational musical applications. These applications 
range from personal entertainment – Midomi5 for music 
search, lastfm6 for music recommendation, iTunes for 
organizing music – teaching and learning aids, to 
completely new methods of composing and generating 
music. All of these applications could be improved through 
the use of high-level musical understanding, which could 
facilitate the creative process for humans and machines. 
 For example, in the previous section the utility of a 
musical score editor was discussed. However, as more 
musical knowledge is available, even more intriguing 
applications become possible. With a little bit of linguistic 
knowledge, word processors are now armed with spell 
checkers, grammar checkers, thesauri, and a host of other 
tools that make them so much more than simple typesetting 
programs. Similarly, with more musical knowledge, a 
score editor could have the ability to highlight potential 
typos, identify irregularities in meter or rhythm, and 
suggest alternative notes and phrases. Another interesting 
application that comes closer to realization is completely 
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automated music transcription. Unlike the score editor, 
which requires the person to have a certain level of 
proficiency in music notation, this type of system does not 
impose such a restriction. This could be a particularly 
useful training aid for someone who has picked up an 
instrument by ear, but has no formal training, for example. 
 Klapuri (2004) describes how such a system could be 
built using signal processing techniques (an acoustic 
model). As he notes, while these techniques produce 
desirable results they cannot account for the human 
listener’s full experience or come close to the performance 
of a trained musician. One proposed method is to combine 
the acoustic model with a language model, analogous to 
most state of the art speech recognition systems.  
 The most prominently used models in speech 
recognition systems are n-grams (Jurafsky and Martin, 
2000). These models estimate the probability of a word by 
conditioning on the words immediately preceding it, and 
combine these probabilities to estimate the probability of 
an entire sequence. Their popularity stems from their low 
complexity and relative high performance. Theoretically, 
however, they suffer from an inability to capture long 
distance dependencies in much the same way many of the 
improvisation systems do and will ultimately lead to a 
bottleneck in performance. The following example from 
Chelba and Jelenik (2000) highlights the issue: 

The contract ended with a loss of 7 cents after trading 
as low as 9 cents 

Estimating the probability of the word after using a trigram 
model only conditions on the words 7 cents. However, the 
words 7 cents do not offer many clues that after, or any 
other word, is coming next. The subject contract and the 
verb ended, however, do seem to be better indicators. It is 
unlikely that a model, such as n-grams, that are based on 
word locality will ever be able to effectively capture this 
information. On the other hand, using a syntax-based 
model opens up the possibility of conditioning on syntactic 
locality, which has a much greater chance of leveraging 
long distance dependency relationships. 
 The development of the Penn Treebank (Marcus, 1993) 
has enabled the creation of high accuracy syntactic parsers 
for natural language processing tasks. Syntactic language 
models built from this data set have shown improvements 
over n-gram models in terms of perplexity, especially 
when the two are interpolated together (Chelba and Jelink 
1998; Roark, 2000; Charniak 2001). In many areas these 
parsing techniques have already proven invaluable. Many 
of the top-performing question answering systems in the 
TREC competition (Dang et al., 2006), e.g. PowerAnswer 
3 (Moldovon et al., 2006), make use of syntactic analysis 
to extract deeper semantic representations that have led to 
significant performance leads over other techniques. It is 
not hard to think of analogous musical applications where 
a richer analysis could be beneficial, such as melody based 
search, author detection, classification, phrase suggestions, 
and composition analysis. 



 One of the biggest problems with these supervised 
parsing techniques is the lack of available training data. 
Although seemingly large, with over one million words, 
the Treebank only scratches the surface of what is needed 
to adequately cover the English language, let alone other 
languages. The situation only gets worse for music. Not 
only are there no available large corpora of syntactically 
annotated data but also the drop in performance going from 
one genre to another is likely to be even greater than, for 
example, moving from the Wall Street Journal text to 
fictional literature. Even if a suitable collection of genres 
could be identified developing annotation guidelines would 
be particularly difficult. Reaching a consensus for English, 
where the history of linguistic research dates back over 100 
years, was arduous enough. For music, on the other hand, 
there has been even less debate on the appropriate 
formalisms for syntactic analysis, potentially making the 
development of a corpus even more difficult.  
 Although there is typically a severely limited supply of 
annotated data, there is usually an abundance of un-
annotated data, in both language and music. In the absence 
of annotated data, supervised techniques, which are able to 
learn only from structured annotated data, are no longer 
feasible. Instead, unsupervised methods, which try to 
induce structure from un-annotated data, can be used. 
Although unsupervised methods generally have not 
performed as well as their supervised counterparts, they at 
least offer the possibility of some analysis, and the promise 
of improved performance in the future. At the very least 
they could be used to bootstrap the process of annotating 
data, where having partially annotated data to start with, 
even if incorrect, has shown to decrease the development 
time and increasing the overall accuracy (Marcus, 1993). 

Constituent Context Model 
Until fairly recently unsupervised parsing techniques had 
not been competitive with their supervised counterparts. In 
fact, unsupervised parsing has been such a difficult task 
that they have even had trouble surpassing the performance 
of a simple right branching rule baseline. Klein and 
Manning’s Constituent Context Model (CCM) is the first 
such technique that showed significant improvements over 
this baseline, and is relatively competitive with supervised 
techniques, reaching an unlabelled F-score of over 70%. 
Although this is not necessarily the absolute best 
performing unsupervised system today, its performance is 
still near state-of-the-art, and is easy to adapt to new 
domains. 
 The Inside-Outside algorithm is one of the standard 
techniques used for grammar induction. One typically 
starts with a template grammar and uses the un-annotated 
data to iteratively learn probabilities for each rule by 
estimating the number of times that rule is used in all 
possible parse trees for all the sentences in the training 
data. The Inside-Outside algorithm suffers from several 
problems that have inhibited it from producing strong 
results. Two of the most prominent are that it is very 

sensitive to the initial parameters, and that the guaranteed 
increase in likelihood of the rules will not necessarily 
produce linguistically, or musically, motivated results. 
 The CCM model is a derivative of the Inside-Outside 
algorithm that attempts to address these two issues. The 
basic tenet of the CCM model is that there are two main 
properties that determine the constituency of a phrase: 

1) the phrase itself, and 
2) the context in which the phrase appears. 

The model essentially gives up trying to find labeled rules 
that lead to a good derivation. Instead at every step in 
building the (binary) parse tree, it asks, “given the span of 
words dominated by this node and the context in which 
they are surrounded, is this span a constituent or not”. 
Similar to the Inside-Outside algorithm it uses a dynamic 
programming approach to estimate the number of times 
each span of words and each context is seen. 

Musical CCM Model 
The CCM model works well for English, but does it work 
well for music? This is probably much too difficult a 
question to answer in general. However, if we limit the 
scope to melodies as a start, the model seems to make 
sense. As with English, melodic phrases are highly 
determined by the notes in the phrase segment itself, and 
the notes surrounding this segment. So, adapting the model 
from language to musical melodies should be relatively 
straightforward. By replacing words with melodic features 
one does not even need to make any underlying changes to 
the model. We explored this approach by inducing a 
grammar from a corpus of melodies using the CCM model. 
One of the major issues, however, is choosing the right 
melodic features to encode. In this section we discuss the 
corpus we developed, and how it was encoded. 
 Several considerations were made when compiling a 
corpus. The original corpus used by Klein and Manning 
contained approximately 7000 sentences.  To ensure we 
had enough data to adequately train our model, we aimed 
to amass a corpus of equivalent size. Due to limitations of 
the CCM model, we chose to have phrases under 10 tokens 
in length. Additionally, as a first attempt we thought it 
prudent to choose a genre that was fairly well structured to 
give the model a good chance to succeed. For these 
reasons, we chose the fugues from Bach’s Well-Tempered 
Clavier. All 48 Fugues are available in the kern machine-
readable format from http://kern.humdrum.net. These work 
particularly well because fugues are made up of multiple 
independent voices that combine to form a single harmony. 
It is therefore possible to separate out each voice, and treat 
each one as a separate melody, and thus dramatically 
increase the amount of training data in the corpus. Since 
the voices essentially extend throughout the entire piece, a 
method for breaking them into shorter phrases was needed.  
 To segment the voices into phrases, we used Grouper, a 
publicly available segmentation algorithm developed by 
Temperley (2001), that has been shown to perform well 
compared with other automated segmentation algorithms 



(Thom, Spevak and Hoethker 2002). Grouper is available 
as part of Sleator and Temperley’s Melisma program7. 
Although this program does not allow a hard limit on 
phrase length, which would not be appropriate in this case, 
the user can set the preferred length. The corpus, after 
applying Grouper, resulted in a collection of about 5000 
melodies comprised of phrase segments approximately 10 
notes in length. 
 The second major consideration for the corpus is the 
encoding to use. If the encoding is too fine grained, then 
the small amount of training data will pose a problem; on 
the other hand, if the representation is too coarse, then 
there will not be sufficient information from which to learn 
distinguishing cases. In language, part of speech tags are 
often used as a compromise. In music, we deal with a 
similar problem. With even the most naïve view of a 
melody, each basic unit (the note) comprises of at least a 
pitch and an associated duration. Even if we quantize pitch 
values, there is still a wide range of possible values for 
most instruments; the same holds true for possible duration 
values. Since Grouper requires that the data be encoded as 
triplets of onset, offset and a midi pitch value, we chose to 
examine the following six possible encodings based on 
these values: 

1) absolute pitch value (midi value from 0 to 127), 
2) pitch value relative to key, 
3) first pitch relative to key, others relative to prior, 
4) absolute duration (offset – onset), 
5) duration relative to average, and 
6) first duration relative to average, others relative to 

previous duration. 
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We used the spiral array center of effect generator key 
finding algorithm developed by Chew (2000) to locate the 
key of each melody, after applying a pitch spelling 
algorithm (Chew and Chen 2005), for the second encoding. 
Since the primary concern of a melody is the tune, and 
usually not the octave in which it is played, we shifted the 
key to the octave of the first note in the melody. This key is 
then mapped back into the appropriate midi value. 
Although some information is lost, the benefits seem to 
outweigh the consequences. One can devise other 
combinations of the pitch and duration information that 
would also be natural, but have not been tried at this point. 
Figure 1 illustrates an example of an example melody 
using the second encoding. Just above the melody is a 
visual representation of the encoding with the notes 
positioned on a graph base on how far from the key they 
are. The numeric value on the graph represents the distance 
in midi tones the pitch is from the shifted key. Above the 
encoding is a sample parse tree output from the system. 

Experiments 
 Since there are no readily available annotated corpora to 
evaluate the quality of the melodic parses, a method for 
determining the quality of the trees was necessary. 
Building an evaluation corpus was one option. Due to the 
cost of development, and because it is delicate to create 
your own evaluation corpus when the question of bias may 
taint the results regardless of its integrity we chose not to 
pursue this option. Perplexity is a metric that is often used 
for evaluating the quality of a language model. However, 
this was not possible because, unlike the traditional Inside-
Outside algorithm, the CCM model does not generate true 
probabilities. 
 To try to measure a similar predictive quality that 
perplexity captures, we devised a simple classification 
experiment. For each melodic phrase in the test corpus, 
another melody with the same symbols, but reordered 
randomly, was created. The trained model was then used to 
choose which sequence in the held out test corpus was 
more likely to be a melody from a Bach Fugue. Using 
these guidelines a 20-fold cross validation experiment was 
run for each of the six encodings. 
 The results are summarized in Table 1. As can be 
expected using the absolute values for pitch and duration 
are too fine grained, and do not lead to the best results. The 
best results were achieved using the relative duration 
encoding (type 6). Each of the pitch encodings performed 
roughly equivalently, although normalizing to the key did 
produce slightly higher scores on average. In all cases the 
performance was well above a 50% baseline, showing that 
there is enough information from which to learn, and that 
the model is able to capture at least some of that 
information. The variation in performance indicates that 
the encoding is an important factor for high performance 
classification. While the performance metric suggests that 
melodic parses based on relative duration are the most 
predictive and well formed, it makes no guarantee that 

 
Figure 1: A sample melody from the Well-Tempered 
Clavier, Volume 1, Fugue 1 along with its parse 
generated using encoding (2) as seen above the musical 
notation. 



these parses are the most theoretically or musically 
interesting. 
 It is probable another more sophisticated classification 
algorithm such as Maximum Entropy, Support Vector 
Machines or even an n-gram language model could 
perform better at this task. Our goal is simply to show 
theoretically the plausibility of these abstracted tree 
structures. Many of the melodic phrase encoding have little 
or no variation because the same duration is repeated a 
significant number of times, for example. In these cases the 
classification was considered incorrect because neither 
sequence was considered more likely and leads to an 
upper-bound in performance that is less than 100%. 
Regardless of improvements in the encoding or using other 
classification algorithms there is relatively little room for 
performance increases above the best encoding because of 
this upper-bound. 

Future Work 
These initial results are encouraging and suggest that the 
CCM model is able to learn an adequate grammar for 
musical melodies. There are still several open questions 
that we would like to explore however. The encodings we 
have chosen are only a few of the possibilities and it would 
be interesting to experiment with more complex 
combinations.  Our encoding also chooses the key with 
regard to the local phrase segment, but another valid option 
would be to use the global key from the entire piece.  
 The CCM model is not the only unsupervised parsing 
model available, and it would be interesting to see the 
results of other techniques. For example, Bod (2001) 
applied his Data Oriented Parsing model to the task of 
melodic segmentation. Since then, he has adapted his 
model specifically for unsupervised parsing and has shown 
highly competitive results (2006). It might be worth 
considering Bod’s model for the specific task of musical 
grammar induction as well. 
 From a practical standpoint a more indicative test of any 
supervised or unsupervised parsing model will be how it 
impacts system performance in real world tasks, such as 
the value added (or not) when such models are integrated 
into an automated transcription program. An alternatively 
good test might be the integration in a computer-assisted 
composition tool for use as a visual aid. Experts could then 
qualitatively decide whether having the tree structure 

information available is useful without having to do full 
evaluations using an annotated corpus. From a more 
theoretical viewpoint it would also be interesting to have 
experts rate the quality of the melodic parses in some way, 
either through a gold standard or through qualitative 
ratings. 
 Despite the theoretical benefits of parsing, and 
especially unsupervised parsing, there remain many 
drawbacks and opportunities for further research. Although 
indirectly useful through enabling and improving new 
applications such as question answering, there are few 
definitive results that successfully integrate syntactic 
language models, supervised or not, directly into an 
application framework. Although unsupervised models 
have the potential to match the performance of supervised 
ones, they still lag far behind supervised models. 
 In summary, syntactic analysis has the potential to 
change the landscape of musical applications, the same 
way high accuracy parsing has enabled a variety of 
applications previously unimaginable in the language 
processing community. While the Natural Language 
Processing community has benefited from the Penn 
Treebank, there is no analogous resource available from 
music. Developing such a corpus is likely to be fraught 
with even more challenges for deciding which formalisms 
to use, and genres to annotate. Unsupervised parsing 
techniques offer a way to address this issue because they 
do not require any annotated data. These techniques offer 
the possibility of learning something entirely new because 
they are not limited by any particular formalism, nor are 
they bound by the noise introduced by inter-rater 
disagreements. This combination of characteristics 
addresses both key aspects of creativity by enabling 
computers to assist in more complex tasks, and by 
imparting the ability to learn from data beyond a particular 
rule set. 
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