
Supporting Musical Creativity With Unsupervised Syntactic Parsing

Reid Swanson*†, Elaine Chew*‡ and Andrew S. Gordon*†

* University of Southern California Viterbi School of Engineering, Los Angeles, California
†University of Southern California Institute for Creative Technologies, Los Angeles, California

‡Radcliffe Institute for Advanced Study at Harvard University, Cambridge, Massachusetts

Abstract
Music and language are two human activities that fit well
with a traditional notion of creativity and are particularly
suited to computational exploration. In this paper we will
argue for the necessity of syntactic processing in musical
applications. Unsupervised methods offer uniquely
interesting approaches to supporting creativity. We will
demonstrate using the Constituent Context Model that
syntactic structure of musical melodies can be learned
automatically without annotated training data. Using a
corpus built from the Well Tempered Clavier by Bach we
describe a simple classification experiment that shows the
relative quality of the induced parse trees for musical
melodies.

Introduction
Creativity is a difficult concept to define precisely, yet we
all have an intuitive feeling for what is and is not creative.
Although creativity is used to describe innovative and
unique methods of accomplishing just about any task, the
arts are most prototypically associated with creativity and
the creative process. Music and language are two human
activities that tie into this traditional notion of creativity
well, and are particularly suited to computational
exploration for several reasons. The ubiquity of these
expressions and the ability for most people to have at least
some limited experience or ability in these areas are key
aspects that make these topics so appealing for research.
Another reason is the relative ease in which basic units of
“meaning” can be represented in various machine-readable
formats. Language and music also share many
characteristics that could allow key insights from one
domain to shed light on the other.
 There are many relationships that can be found between
music and language dating as far back as Socrates, Plato
and Aristotle. Dobrian (1992) elaborates three categories
that are particularly recurrent in this discussion. The most
relevant to this work is the concept of music as a language
itself. When viewed in this way it is natural to apply
linguistic theories of syntax and semantics to try to analyze
and derive meaning from music. Dobrian (1992) ultimately
argues that music is not a language in the same way
English is, for example, because there are simply too many

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sonic elements that do not have a culturally defined
meaning. However, even in this restricted view he believes
that music contains many linguistic elements including
symbols and grammar that allow linguistic analysis to be
enlightening.
 One of the more specific relationships between music
and language is the natural ability to recursively group
primitive elements together to form larger and larger units
organized in a hierarchical structure. Syntax, or grammar,
is a long and actively researched topic in the field of
Linguistics that has been dedicated to these structures.
Music does not have the rich history that Linguistics does
in the area of syntax, but some work has been done, most
notably by Lerdahl and Jackendoff (1983) and by
Steedman (1996). There is even evidence that some of the
syntactic processing for both types of data are processed in
the same region of the brain (see, for example, Patel 2003),
although not necessarily in the same way. Over the last
decade syntactic processing has permeated nearly all
aspects of natural language processing topics. Not only has
the use of syntactic information directly improved the
results of many traditional tasks, it has also enabled more
complex systems to be built that were not possible without
syntactic information.
 Although, the use of syntactic information in the musical
composition process and in music analysis is frequently
discussed and often considered fundamental, there has
been relatively little work on integrating this information
into automated approaches to music analysis and
generation. Two examples are the computer
implementations of Lerdahl and Jackendoff’s General
Theory of Tonal Music (GTTM) by Hirata and Matsuda
(2003), and by Hamanaka, Hirata, and Tojo (2006).
However, due to ambiguities in the GTTM rules, the
programs require human intervention to parse an input.
 Hierarchical processing has also been integrated into
some computing interfaces for music composition.
Tuneblocks explicitly makes use of hierarchical units for
teaching composition techniques to beginning and novice
composers (Bamberger, 1999). Concepts of hierarchical
construction have also been implemented in the maquette
in OpenMusic1. Few automatic methods for generating
music actually consider such hierarchical structures. Just as
using syntactic representations has been useful in human

1 http://recherche.ircam.fr/equipes/repmus/OpenMusic

guided learning processes, syntactic information could be
useful for a host of computational music applications.
 One starting point for developing automatic parsing
techniques for music would be to adapt successful
techniques from the language community to music. The
most successful language parsing techniques require the
development of large annotated corpora, which is riddled
with difficulties. Early work in linguistic syntax analysis
also showed that hand authored grammars are extremely
difficult to create, debug and maintain. Until recently the
quality of automatically learned grammars was found to be
insufficient for even the most rudimentary tasks. Recent
progress in unsupervised language parsing techniques have
produced results that are much more competitive with state
of the art systems, and may provide the ability to identify
reasonable syntactic structure in music.
 In this paper we argue for the necessity of syntactic
processing in musical applications, particularly for two key
aspects of creativity: enabling human creativity and being
innately creative. We propose that unsupervised methods
offer a uniquely interesting solution to both aspects. To
demonstrate that these techniques are not just theoretically
possible, we will describe how an unsupervised parsing
technique developed by Klein and Manning (2002) for use
with language can be used in the musical domain to parse
musical melodies. In lieu of an annotated corpus of
melodies, we describe a simple experiment that estimates
the quality of the learned syntactic structures and shows
their plausibility and promise for future research.

Computational Creativity
There are two main ways in which computers can play a
significant role in the creative process of musical
innovation. The first is by enabling the human to be more
creative through facilitating mundane or arduous tasks not
directly focused on the idea, yet are typically necessary for
completing the process. For example, a musical score
editor (e.g., Musicease2 or Sibelius3) can greatly ease the
creation and management of writing formal music notation.
This can allow more focus and energy to be dedicated to
the musical ideas and themes, in much the same way a
word processor allows writers to spend more time on the
content, and less time worrying about desktop publishing.
The second way a computer can play a role in the creative
process is for the computer itself to be creative. This
second way is more alluring from an Artificial Intelligence
point of view, however it is much more difficult to define
exactly what it might mean.
 Defining how a computer can be creative is a thorny
topic not easy to resolve. However, there are at least two
possibilities that are immediately apparent. One could
determine the creativity of a system analogous to the
Turing test by using human judges to compare the system’s
output to that of a human. Conversely, one could also

2 http://www.musicease.com
3 http://www.sibelius.com

determine the creativity of the system based on the process
it uses to derive its output.
 Having humans judge the level of creativity of a
machine’s output poses two significant theoretical
problems. Although we would like to test how creative the
machine is, by using humans we are in a sense testing how
creative those people are in ascribing meaning to the
output. Depending on the background of the person, their
experiences and knowledge of the genre any computer-
generated material may take on wildly different
interpretations for different people, or even the same
person in different circumstances. While this may be useful
for inspiring new ideas in humans this is not adequately
addressing the question “is the computer creative?” The
other concern is epistemic. Even if our human judges were
able to agree on an objective common knowledge for
grading creativity, it would limit the performance of the
machine to that of the human intellect. Although the
human intellect is not likely to be the limiting constraint in
the near future, it is not wise to build such a limitation into
the definition of creativity. Finally, introspection about the
creation should not just inspire us that it is good but why it
is good, and afford the possibility of learning something
beyond our own biases and capabilities.
 Computational systems can embody these two types of
creative processes in a multitude of ways. At one extreme
are deterministic rule based systems, and completely
unsupervised learning agents at the other end. Rule based
systems are more naturally aligned with enabling humans
to be more creative for several reasons. Often, as in the
case of a musical score editor, the arduous tasks are well
defined, and a series of rules can be written to alleviate
much of the burden. Also, their behavior is typically
expected or predictable, which can be beneficial for many
applications, although the system’s predictability usually
subverts the possibility of its being creative. Rule based
systems are not always predictable however. Wolfram
tones4 are a good example of how a seemingly simple rule
can lead to unexpected emergent properties. Dabby (1996)
also describes a music generation system that transforms
human composed pieces in unpredictable and interesting
ways using a chaotic mapping. By manipulating the initial
conditions, one can produce variations that closely
resemble the original piece or ones that deviate so much
they become unrecognizable. These techniques can be used
as novel methods of creating music but they are also useful
in inspiring new ideas through the combination or
recombination of sounds one may have never imagined.
 Although the derivation of these deterministic systems is
creative and they certainly inspire creativity in humans it is
still difficult to say they are being creative. It seems more
natural to align systems capable of learning with the act of
being creative. Pachet’s Continuator (2003) using Markov
models, or the family of improvisation systems based on
Factor Oracles described in Assayag and Dubnov (2004),
Assayag et. al. (2006), and François, Chew and Thurmond

4 http://tones.wolfram.com/about/how.html

(2007) are recent examples of this type of model. Assayag
et al. (2006) also describes a range of other musical
improvisation systems based on statistical learning
techniques. In these cases the act of creation is not the
direct application of a known set of procedures, regardless
of how unknown the output may appear, but is dependent
on the input it is given and its ability to distinguish useful
patterns.
 Although rule based systems and learning systems tend
to diverge in their respective strengths concerning the two
types of computational creativity, there is no hard and fast
line. For example Voyager (see George Lewis, 2000) is an
early example, created in the 1980s, of a primarily rule
based improvisation system that has 64 independent voices
that can adapt to each other, and up to as many as two
human performers. Similarly, learning based approaches
often facilitate our own creativity, for example through
simple actions like automatic text, or note, completion.
 Our goal is to show that the unsupervised parsing
methods described in this paper can fit within both aspects
of computational creativity discussed in this section. The
factor oracle and Markov models, as used in the
improvisation systems mentioned above, can also be seen
as an instance of unsupervised parsing, but without
grammar induction. However, the use of these models has
been motivated by their ability to train and execute in real
time, and not necessarily for providing deep or structural
analysis. Without these restrictions we will examine some
other possible uses.

Parsing Music as Language
The widespread availability of massive amounts of
computational power at all levels of devices from personal
computers to embedded devices has produced an explosion
of computational musical applications. These applications
range from personal entertainment – Midomi5 for music
search, lastfm6 for music recommendation, iTunes for
organizing music – teaching and learning aids, to
completely new methods of composing and generating
music. All of these applications could be improved through
the use of high-level musical understanding, which could
facilitate the creative process for humans and machines.
 For example, in the previous section the utility of a
musical score editor was discussed. However, as more
musical knowledge is available, even more intriguing
applications become possible. With a little bit of linguistic
knowledge, word processors are now armed with spell
checkers, grammar checkers, thesauri, and a host of other
tools that make them so much more than simple typesetting
programs. Similarly, with more musical knowledge, a
score editor could have the ability to highlight potential
typos, identify irregularities in meter or rhythm, and
suggest alternative notes and phrases. Another interesting
application that comes closer to realization is completely

5 http://www.midomi.com
6 http://www.last.fm

automated music transcription. Unlike the score editor,
which requires the person to have a certain level of
proficiency in music notation, this type of system does not
impose such a restriction. This could be a particularly
useful training aid for someone who has picked up an
instrument by ear, but has no formal training, for example.
 Klapuri (2004) describes how such a system could be
built using signal processing techniques (an acoustic
model). As he notes, while these techniques produce
desirable results they cannot account for the human
listener’s full experience or come close to the performance
of a trained musician. One proposed method is to combine
the acoustic model with a language model, analogous to
most state of the art speech recognition systems.
 The most prominently used models in speech
recognition systems are n-grams (Jurafsky and Martin,
2000). These models estimate the probability of a word by
conditioning on the words immediately preceding it, and
combine these probabilities to estimate the probability of
an entire sequence. Their popularity stems from their low
complexity and relative high performance. Theoretically,
however, they suffer from an inability to capture long
distance dependencies in much the same way many of the
improvisation systems do and will ultimately lead to a
bottleneck in performance. The following example from
Chelba and Jelenik (2000) highlights the issue:

The contract ended with a loss of 7 cents after trading
as low as 9 cents

Estimating the probability of the word after using a trigram
model only conditions on the words 7 cents. However, the
words 7 cents do not offer many clues that after, or any
other word, is coming next. The subject contract and the
verb ended, however, do seem to be better indicators. It is
unlikely that a model, such as n-grams, that are based on
word locality will ever be able to effectively capture this
information. On the other hand, using a syntax-based
model opens up the possibility of conditioning on syntactic
locality, which has a much greater chance of leveraging
long distance dependency relationships.
 The development of the Penn Treebank (Marcus, 1993)
has enabled the creation of high accuracy syntactic parsers
for natural language processing tasks. Syntactic language
models built from this data set have shown improvements
over n-gram models in terms of perplexity, especially
when the two are interpolated together (Chelba and Jelink
1998; Roark, 2000; Charniak 2001). In many areas these
parsing techniques have already proven invaluable. Many
of the top-performing question answering systems in the
TREC competition (Dang et al., 2006), e.g. PowerAnswer
3 (Moldovon et al., 2006), make use of syntactic analysis
to extract deeper semantic representations that have led to
significant performance leads over other techniques. It is
not hard to think of analogous musical applications where
a richer analysis could be beneficial, such as melody based
search, author detection, classification, phrase suggestions,
and composition analysis.

 One of the biggest problems with these supervised
parsing techniques is the lack of available training data.
Although seemingly large, with over one million words,
the Treebank only scratches the surface of what is needed
to adequately cover the English language, let alone other
languages. The situation only gets worse for music. Not
only are there no available large corpora of syntactically
annotated data but also the drop in performance going from
one genre to another is likely to be even greater than, for
example, moving from the Wall Street Journal text to
fictional literature. Even if a suitable collection of genres
could be identified developing annotation guidelines would
be particularly difficult. Reaching a consensus for English,
where the history of linguistic research dates back over 100
years, was arduous enough. For music, on the other hand,
there has been even less debate on the appropriate
formalisms for syntactic analysis, potentially making the
development of a corpus even more difficult.
 Although there is typically a severely limited supply of
annotated data, there is usually an abundance of un-
annotated data, in both language and music. In the absence
of annotated data, supervised techniques, which are able to
learn only from structured annotated data, are no longer
feasible. Instead, unsupervised methods, which try to
induce structure from un-annotated data, can be used.
Although unsupervised methods generally have not
performed as well as their supervised counterparts, they at
least offer the possibility of some analysis, and the promise
of improved performance in the future. At the very least
they could be used to bootstrap the process of annotating
data, where having partially annotated data to start with,
even if incorrect, has shown to decrease the development
time and increasing the overall accuracy (Marcus, 1993).

Constituent Context Model
Until fairly recently unsupervised parsing techniques had
not been competitive with their supervised counterparts. In
fact, unsupervised parsing has been such a difficult task
that they have even had trouble surpassing the performance
of a simple right branching rule baseline. Klein and
Manning’s Constituent Context Model (CCM) is the first
such technique that showed significant improvements over
this baseline, and is relatively competitive with supervised
techniques, reaching an unlabelled F-score of over 70%.
Although this is not necessarily the absolute best
performing unsupervised system today, its performance is
still near state-of-the-art, and is easy to adapt to new
domains.
 The Inside-Outside algorithm is one of the standard
techniques used for grammar induction. One typically
starts with a template grammar and uses the un-annotated
data to iteratively learn probabilities for each rule by
estimating the number of times that rule is used in all
possible parse trees for all the sentences in the training
data. The Inside-Outside algorithm suffers from several
problems that have inhibited it from producing strong
results. Two of the most prominent are that it is very

sensitive to the initial parameters, and that the guaranteed
increase in likelihood of the rules will not necessarily
produce linguistically, or musically, motivated results.
 The CCM model is a derivative of the Inside-Outside
algorithm that attempts to address these two issues. The
basic tenet of the CCM model is that there are two main
properties that determine the constituency of a phrase:

1) the phrase itself, and
2) the context in which the phrase appears.

The model essentially gives up trying to find labeled rules
that lead to a good derivation. Instead at every step in
building the (binary) parse tree, it asks, “given the span of
words dominated by this node and the context in which
they are surrounded, is this span a constituent or not”.
Similar to the Inside-Outside algorithm it uses a dynamic
programming approach to estimate the number of times
each span of words and each context is seen.

Musical CCM Model
The CCM model works well for English, but does it work
well for music? This is probably much too difficult a
question to answer in general. However, if we limit the
scope to melodies as a start, the model seems to make
sense. As with English, melodic phrases are highly
determined by the notes in the phrase segment itself, and
the notes surrounding this segment. So, adapting the model
from language to musical melodies should be relatively
straightforward. By replacing words with melodic features
one does not even need to make any underlying changes to
the model. We explored this approach by inducing a
grammar from a corpus of melodies using the CCM model.
One of the major issues, however, is choosing the right
melodic features to encode. In this section we discuss the
corpus we developed, and how it was encoded.
 Several considerations were made when compiling a
corpus. The original corpus used by Klein and Manning
contained approximately 7000 sentences. To ensure we
had enough data to adequately train our model, we aimed
to amass a corpus of equivalent size. Due to limitations of
the CCM model, we chose to have phrases under 10 tokens
in length. Additionally, as a first attempt we thought it
prudent to choose a genre that was fairly well structured to
give the model a good chance to succeed. For these
reasons, we chose the fugues from Bach’s Well-Tempered
Clavier. All 48 Fugues are available in the kern machine-
readable format from http://kern.humdrum.net. These work
particularly well because fugues are made up of multiple
independent voices that combine to form a single harmony.
It is therefore possible to separate out each voice, and treat
each one as a separate melody, and thus dramatically
increase the amount of training data in the corpus. Since
the voices essentially extend throughout the entire piece, a
method for breaking them into shorter phrases was needed.
 To segment the voices into phrases, we used Grouper, a
publicly available segmentation algorithm developed by
Temperley (2001), that has been shown to perform well
compared with other automated segmentation algorithms

(Thom, Spevak and Hoethker 2002). Grouper is available
as part of Sleator and Temperley’s Melisma program7.
Although this program does not allow a hard limit on
phrase length, which would not be appropriate in this case,
the user can set the preferred length. The corpus, after
applying Grouper, resulted in a collection of about 5000
melodies comprised of phrase segments approximately 10
notes in length.
 The second major consideration for the corpus is the
encoding to use. If the encoding is too fine grained, then
the small amount of training data will pose a problem; on
the other hand, if the representation is too coarse, then
there will not be sufficient information from which to learn
distinguishing cases. In language, part of speech tags are
often used as a compromise. In music, we deal with a
similar problem. With even the most naïve view of a
melody, each basic unit (the note) comprises of at least a
pitch and an associated duration. Even if we quantize pitch
values, there is still a wide range of possible values for
most instruments; the same holds true for possible duration
values. Since Grouper requires that the data be encoded as
triplets of onset, offset and a midi pitch value, we chose to
examine the following six possible encodings based on
these values:

1) absolute pitch value (midi value from 0 to 127),
2) pitch value relative to key,
3) first pitch relative to key, others relative to prior,
4) absolute duration (offset – onset),
5) duration relative to average, and
6) first duration relative to average, others relative to

previous duration.

7 http://www.link.cs.cmu.edu/music-analysis

We used the spiral array center of effect generator key
finding algorithm developed by Chew (2000) to locate the
key of each melody, after applying a pitch spelling
algorithm (Chew and Chen 2005), for the second encoding.
Since the primary concern of a melody is the tune, and
usually not the octave in which it is played, we shifted the
key to the octave of the first note in the melody. This key is
then mapped back into the appropriate midi value.
Although some information is lost, the benefits seem to
outweigh the consequences. One can devise other
combinations of the pitch and duration information that
would also be natural, but have not been tried at this point.
Figure 1 illustrates an example of an example melody
using the second encoding. Just above the melody is a
visual representation of the encoding with the notes
positioned on a graph base on how far from the key they
are. The numeric value on the graph represents the distance
in midi tones the pitch is from the shifted key. Above the
encoding is a sample parse tree output from the system.

Experiments
 Since there are no readily available annotated corpora to
evaluate the quality of the melodic parses, a method for
determining the quality of the trees was necessary.
Building an evaluation corpus was one option. Due to the
cost of development, and because it is delicate to create
your own evaluation corpus when the question of bias may
taint the results regardless of its integrity we chose not to
pursue this option. Perplexity is a metric that is often used
for evaluating the quality of a language model. However,
this was not possible because, unlike the traditional Inside-
Outside algorithm, the CCM model does not generate true
probabilities.
 To try to measure a similar predictive quality that
perplexity captures, we devised a simple classification
experiment. For each melodic phrase in the test corpus,
another melody with the same symbols, but reordered
randomly, was created. The trained model was then used to
choose which sequence in the held out test corpus was
more likely to be a melody from a Bach Fugue. Using
these guidelines a 20-fold cross validation experiment was
run for each of the six encodings.
 The results are summarized in Table 1. As can be
expected using the absolute values for pitch and duration
are too fine grained, and do not lead to the best results. The
best results were achieved using the relative duration
encoding (type 6). Each of the pitch encodings performed
roughly equivalently, although normalizing to the key did
produce slightly higher scores on average. In all cases the
performance was well above a 50% baseline, showing that
there is enough information from which to learn, and that
the model is able to capture at least some of that
information. The variation in performance indicates that
the encoding is an important factor for high performance
classification. While the performance metric suggests that
melodic parses based on relative duration are the most
predictive and well formed, it makes no guarantee that

Figure 1: A sample melody from the Well-Tempered
Clavier, Volume 1, Fugue 1 along with its parse
generated using encoding (2) as seen above the musical
notation.

these parses are the most theoretically or musically
interesting.
 It is probable another more sophisticated classification
algorithm such as Maximum Entropy, Support Vector
Machines or even an n-gram language model could
perform better at this task. Our goal is simply to show
theoretically the plausibility of these abstracted tree
structures. Many of the melodic phrase encoding have little
or no variation because the same duration is repeated a
significant number of times, for example. In these cases the
classification was considered incorrect because neither
sequence was considered more likely and leads to an
upper-bound in performance that is less than 100%.
Regardless of improvements in the encoding or using other
classification algorithms there is relatively little room for
performance increases above the best encoding because of
this upper-bound.

Future Work
These initial results are encouraging and suggest that the
CCM model is able to learn an adequate grammar for
musical melodies. There are still several open questions
that we would like to explore however. The encodings we
have chosen are only a few of the possibilities and it would
be interesting to experiment with more complex
combinations. Our encoding also chooses the key with
regard to the local phrase segment, but another valid option
would be to use the global key from the entire piece.
 The CCM model is not the only unsupervised parsing
model available, and it would be interesting to see the
results of other techniques. For example, Bod (2001)
applied his Data Oriented Parsing model to the task of
melodic segmentation. Since then, he has adapted his
model specifically for unsupervised parsing and has shown
highly competitive results (2006). It might be worth
considering Bod’s model for the specific task of musical
grammar induction as well.
 From a practical standpoint a more indicative test of any
supervised or unsupervised parsing model will be how it
impacts system performance in real world tasks, such as
the value added (or not) when such models are integrated
into an automated transcription program. An alternatively
good test might be the integration in a computer-assisted
composition tool for use as a visual aid. Experts could then
qualitatively decide whether having the tree structure

information available is useful without having to do full
evaluations using an annotated corpus. From a more
theoretical viewpoint it would also be interesting to have
experts rate the quality of the melodic parses in some way,
either through a gold standard or through qualitative
ratings.
 Despite the theoretical benefits of parsing, and
especially unsupervised parsing, there remain many
drawbacks and opportunities for further research. Although
indirectly useful through enabling and improving new
applications such as question answering, there are few
definitive results that successfully integrate syntactic
language models, supervised or not, directly into an
application framework. Although unsupervised models
have the potential to match the performance of supervised
ones, they still lag far behind supervised models.
 In summary, syntactic analysis has the potential to
change the landscape of musical applications, the same
way high accuracy parsing has enabled a variety of
applications previously unimaginable in the language
processing community. While the Natural Language
Processing community has benefited from the Penn
Treebank, there is no analogous resource available from
music. Developing such a corpus is likely to be fraught
with even more challenges for deciding which formalisms
to use, and genres to annotate. Unsupervised parsing
techniques offer a way to address this issue because they
do not require any annotated data. These techniques offer
the possibility of learning something entirely new because
they are not limited by any particular formalism, nor are
they bound by the noise introduced by inter-rater
disagreements. This combination of characteristics
addresses both key aspects of creativity by enabling
computers to assist in more complex tasks, and by
imparting the ability to learn from data beyond a particular
rule set.

Acknowledgements
The project or effort described here has been sponsored by
the U.S. Army Research, Development, and Engineering
Command (RDECOM). Statements and opinions expressed
do not necessarily reflect the position or the policy of the
United States Government, and no official endorsement
should be inferred.

References
Assayag, G., Bloch, G., Chemillier, M., Cont, A., Dubnov,

S. 2006. OMax Brothers: A Dynamic Topology of
Agents for Improvization Learning. In Proceedings of
the 1st ACM workshop on Audio and music computing
multimedia, 125–132.

Assayag, G., Dubnov, S. 2004. Using Factor Oracles for
Machine Improvization, G. Assayag, V. Cafagna, M.
Chemillier, eds., Formal Systems and Music special
issue, Soft Computing 8, 1432–7643.

Feature Encoding % Correct
1) absolute pitch 83.36 ± 1.03
2) pitch relative to key 84.29 ± 1.24
3) pitch relative to previous 83.14 ± 1.00
4) absolute duration 72.95 ± 2.78

0.027663 5) duration relative to average 70.62 ± 1.41
6) duration relative to previous 90.69 ± 1.17

Table 1: The percentage of correct classifications between
real and randomly shuffled data for each of the six
encodings.

Bamberger, 2000. Developing Musical Intuitions.
Cambridge, Mass.: MIT Press.

Bod, R. 2001. Stochastic Models of Melodic Analysis:
Challenging the Gestalt Principles Proceedings 14th
Meeting of the FWO Research Society on Foundations
of Systematic Musicology Ghent, Belgium.

Bod, R. 2007. An All-Subtrees Approach to Unsupervised
Parsing. Proceedings ACL-COLING 2006, Sydney.

Charniak, E. Immediate Head Parsing for Language
Models. In Proceedings of the 39th Annual Meeting of
the Association for Computational Linguistics, 2001.

Chelba, C. and Jenilek, F. 1998. Exploiting syntactic
structure for natural language modeling. In proceedings
of the 36th Annual Meeting of the Association for
Computational Linguistics and the 17th International
Conference on Computational Linguistics and 17th
International Conference on Computational Linguistics,
225-231.

Chelba, C. and Jenilek, F. 2000. Structured language
modeling. Computer Speech and Language, 14, 283–
332.

Chew, E. 2000. Towards a Mathematical Model of
Tonality. Ph.D. dissertation. Operations Research Center,
MIT. Cambridge, Mass.

Chew, E., and Chen, Y.-C. (2005). Real-Time Pitch
Spelling Using the Spiral Array. Computer Music
Journal, 29(2), pp.61-76.

Dabby, D. S. 1996. Musical variations from a chaotic
mapping. Chaos: An Interdisciplinary Journal of
Nonlinear Science, June 1996, Vol.6, Iss.2, pp.95-107.

Dang H. T., Lin, J. and Delly, D. 2006. Overview of the
TREC 2006 Question Answering Track. In proceedings
of the Fifiteenth Text Retrieval Conference.

Dobrian, C. 1992. Music and Language. Available at
http://music.arts.uci.edu/dobrian/CD.music.lang.htm.

Hamanaka, M., Hirata, K., and Tojo, S. 2006.
Implementing “A Generative Theory of Tonal Music”.
Journal of New Music Research, 35(4), 249–277.

Hirata, K., and S. Matsuda. 2003. Interactive Music
Summarization based on Generative Theory of Tonal
Music. Computer Music Journal 27(3), 73–89.

Jurafsky, D., and Martin, J. 2000. Speech and Language
Processing: An Introduction to Natural Language
Processing, Speech Recognition, and Computational
Linguistics. Prentice-Hall.

Klapuri, A. " Signal processing methods for the automatic
transcription of music," Ph.D. thesis, Tampere
University of Technology, Finland, April 2004.

Klein, D. and Manning, C. D. 2002. A generative
constituent-context model for improved grammar
induction. Proceedings of 40th Annual Meeting of the
Assoc. for Computational Linguistics.

Lerdahl, F., and Jackendoff, R. 1983. A Generative Theory
of Tonal Music. Cambridge, Mass.: MIT Press.

Lewis, G. 2000. Too Many Notes: Computers, Complexity
and Culture in Voyager, Leonardo Music Journal 10,
33–39.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
1993. Building a large annotated corpus of English: the
penn treebank. Comput. Linguist. 19, 2 (Jun. 1993), 313-
330.

Moldovan, D., Bowden, M., Tatu, M. 2006. A Temporally-
Enhanced PowerAnswer in TREC 2006. In proceedings
of the Fifiteenth Text Retrieval Conference.

Pachet, F. 2003. The Continuator: Musical Interaction
With Style. J. of New Music Research, 32(3), 333–341.

Patel A.D. (2003). Language, music, syntax and the brain.
Nature Neuroscience 6(7):674-681.

Roark, B. 2001. "Probabilistic top-down parsing and
language modeling," Computational Linguistics, vol. 27,
no. 3, pp. 249--276.

Steedman, M. 1996. The Blues and the Abstract Truth:
Music and Mental Models, In A. Garnham and J.
Oakhill, eds., Mental Models In Cognitive Science.
Mahwah, NJ: Erlbaum, 305–318.

Temperley, D. 2001. The Cognition of Basic Musical
Structures. Cambridge, Mass.: MIT Press.

Thom, B., Spevak, C., Hoethker, K. 2002. Melodic
Segmentation: Evaluating the Performance of
Algorithms and Musical Experts. In Proceedings of the
International Computer Music Conference.

