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Abstract—Many machine perception tasks require a trained
model to assign class labels to multiple entities in the same
context, e.g., labeling multiple objects in a single photograph. In
these tasks, different combinations of labels may be more likely
than others, e.g., when co-occurrence biases are considered, such
that the most-confident label assigned to an individual object
is not always the best choice. In this paper, we propose a new
method for combining evidence from multiple class probability
distributions to identify the most probable combination of labels
in multi-entity contexts. Our method encodes discrete class
probability distributions as literals in first-order logic, and
uses probability-ranked logical abduction to identify the most
likely label combination, incorporating the prior and conditional
probabilities of each label. We evaluate our method on two
computer vision benchmarks, first for labeling common objects
in photographs of everyday contexts, and second for labeling
actions of athletes in sports videos. Results indicate significant
gains in classifier accuracy over systems that merely select the
model’s most confident class label.

Index Terms—I.2.6.g Machine learning I.2.3.d Inference en-
gines I.2.4 Knowledge Representation Formalisms and Methods

I. INTRODUCTION

In many machine learning tasks, a trained classifier is
applied to multiple entities that appear in the same context.
For example, a trained image classifier might be applied to
multiple bounding boxes in the same photograph, or an action
classifier might be applied to multiple people that appear in the
same video clip. In these tasks, the classifier’s most-confident
label for an individual entity may not always be the best choice
when considering the labels assigned to the other entities. If
a potential label frequently co-occurs with another label that
has been assigned to a different entity in the context, it may
be a better choice than labels with higher confidence scores.
Ideally, all of the known co-occurrence statistics (estimated
from training data) could be exploited for all of the entities in
a context, simultaneously, to identify the best combination of
class labels. Doing so requires a mechanism for combinatorial
search and a means of ranking combinations that incorporates
the available co-occurrence information.
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In this paper, we investigate the use of probabilistic ab-
ductive reasoning as a general mechanism for identifying the
most likely combination of labels in multi-entity contexts.
Although logical abduction is more typically used in common-
sense reasoning and diagnostic applications, our focus is on
exploiting its provisions for managing a combinatorial search
and for encoding statistical information in a knowledge base
of logical axioms. Specifically, we investigate a variant of
logical abduction called Etcetera Abduction [1], where prior
and conditional probabilities (estimated from training data)
can be readily encoded in first-order logical axioms. In our
approach, the reasoner is provided with the discrete class
confidence distributions for each entity in a single context
and a knowledge base of prior and conditional probabilities,
and identifies the most probable combination of labels that
logically entail the input distributions.

We evaluate the effectiveness of our approach using two
standard computer vision benchmarks. First, we apply our
method to the assignment of class labels to bounding boxes
in the Common Objects in Context (COCO) dataset of pho-
tographs in naturalistic contexts [2]. Second, we apply our
method to the labeling of actions of athletes in videos of
volleyball matches [3]. In both tasks, we find statistically sig-
nificant gains in classification accuracy over baseline systems
that simply select the most confident label for each entity.

II. ETCETERA ABDUCTION

Abductive reasoning, distinct from deductive and inductive
reasoning, poses the question: What set of assumptions best
explains the observations? Following from the early philo-
sophical treatment by Charles Sanders Pierce, contemporary
formalization of logical abduction casts it as a search for the
highest-ranking set of assumptions that, when paired with a
knowledge base of background axioms, logically entail a set
of input observations. Abductive reasoning using propositional
logic, henceforth propositional abduction, is defined as fol-
lows.

• Given: (i) Background knowledge B, (ii) observations
O, (iii) set A of propositional atoms, and (iv) evaluation
function eval, where B is a set of propositional logic
formulae, and O is a set of propositional literals.



• Find: Among a set H of hypotheses, where H ≡
{H ⊆ A | H ∪ B |= O,H ∪ B ̸|=⊥}, find the
best hypothesis H∗ ∈ H that maximizes eval(H∗) (i.e.
H∗ = argmaxH∈H eval(H)).

Much of the research on logical abduction over the last few
decades has explored various alternatives for the evaluation
function eval, and sought efficient algorithms for abductive
reasoning for more expressive logics beyond the propositional
case. Weighted Abduction [4], for example, identifies candidate
hypotheses by iteratively back-chaining from observations O
that unify with the consequents of first-order logical axioms in
B expressed in implicature form. Antecedent literals in these
axioms are annotated with weights that translate an initial
cost assigned to observation literals to entailing assumptions,
allowing the eval function to rank candidate hypotheses to
identify the one with the least overall cost.

Etcetera Abduction [1] is a more recent variant of logical
abduction that uses first-order logic and a probability-based
evaluation function. In terms of probability theory, abduction
can be viewed as a Maximum A Posteriori (MAP) estimation
where we find the most likely hypothesis given input obser-
vations:

argmax
H∈H

eval(H) = Pr(H|O) =
Pr(O|H)Pr(H)

Pr(O)
(1)

In abduction, this maximization problem can be simply re-
duced to argmaxH∈H Pr(H) because H logically entails O
(i.e. Pr(O|H) = 1) and Pr(O) is constant in the maxi-
mization problem. Using the same method as Poole’s proba-
bilistic Horn-clause abduction [5], Etcetera Abduction naı̈vely
estimates Pr(H) by assuming conditional independence over
elemental hypotheses h ∈ H , such that the joint probability is
estimated as a product of prior probabilities:

Pr(H) =
∏
h∈H

Pr(h) (2)

The key innovation of Etcetera Abduction is a mechanism
for expressing defeasible first-order logical axioms in the
background knowledge base B, without abandoning Poole’s
simple method for estimating Pr(H). As an illustration of
the problem that it solves, consider the following formula that
might be used in a knowledge base B when interpreting a
positive result when testing a person for an infectious disease:

(∀p) (Infected(p) → TestsPositive(p)) (3)

When the observation O is that person Alex tests posi-
tive, the set of hypotheses H will include the hypothesis
Infected(Alex), which fully entails the observations O, and
whose probability is equal to the prior probability of this one
literal. However, this probability estimate fails to incorporate
the conditional probability of testing positive given that Alex
is infected, i.e., the true positive rate of the diagnostic test.
Formula (3) is defeasible, in that it is not always true, and
cannot be included as an axiom in our knowledge base B.

Etcetera Abduction expands on the solution originally used
in Weighted Abduction [4]. A defeasible formula such as

(3) is made into a (non-defeasible) axiom by including a
special literal as an additional conjunct in the antecedent, an
etcetera literal, meant as a proxy for all of the uncertainty that
would also have to be assumed in order for the antecedent to
logically entail the consequent. To be included as an axiom in
knowledge base B, formula (3) would be rewritten as follows:

(∀p) (Infected(p) ∧ Etc42(0.94, p)

→ TestsPositive(p)) (4)

The literal Etc42(0.94, p) represents the innumerable an-
tecedents that must also be true for a person infected with
the disease to receive a positive test result, e.g., the test must
have been administered correctly to the person, the reactive
chemicals in the test have been correctly manufactured, the
person’s sample contains no agents that would interfere with
the chemical reaction, etc.

Formally, an etcetera literal E for a definite clause A∧E →
C is defined as a disjunction of all possible conjunctions e
where A ∧ e → C, such that A ∧ C → E. Or informally,
whenever we have both A and C, the other conditions must
have also been right for them both to be true.

In this definition, (A∧C) is true exactly when (A∧E) is true,
giving us a means of specifying a probabilistic semantics for
etcetera literals. Where truth values represent the occurrence
or nonoccurence of events, we have this equality between their
joint probabilities.

Pr(A,E) = Pr(A,C) (5)

As with all literals in probabilistic Horn-clause abduction [5],
we assume etcetera literals are conditionally independent from
all other literals, such that:

Pr(A)Pr(E) = Pr(A,C) (6)

Solving for Pr(E) gives us a conditional probability:

Pr(E) = Pr(C|A) (7)

That is, the prior probability of an etcetera literal is equal to
the conditional probability of the consequent given the rest
of the antecedent. In axiom (4), the prior probability of the
etcetera literal is equal to the true positive rate of the test:

Pr(Etc42(0.94, p))

= Pr(TestsPositive(p) | Infected(p)) (8)

The subscript in an etcetera literal’s predicate symbol, e.g.,
Etc42, uniquely identifies the uncertainties that are specific
to a given axiom and all of its quantified variables. That is,
it will only appear in one axiom in knowledge base B. By
convention, the prior probability of each etcetera literal is
included as its first argument as a numerical constant (0.94
in axiom (4)), followed by all other axiom variables.

When an etcetera literal E is the only antecedent for a
consequent C, as in the axiom E → C, then the prior
probability of the etcetera literal E is equal to the prior
probability of the consequent C. This affords a simple means



of encoding prior probabilities for all elemental hypotheses.
For example, the base rate of infection for a particular disease
can be encoded in its own etcetera literal:

(∀p) (Etc53(0.035, p) → Infected(p)) (9)

Software implementations of Etcetera Abduction conduct
their search for hypotheses H by iteratively back-chaining
from observations O using background knowledge B, accept-
ing a hypothesis H when all conjuncts h ∈ H are etcetera
literals, and Pr(H) is the product of the numerical constants
encoded as the first arguments in each literal. For example,
in a knowledge base B that includes axioms (4) and (8),
the observation O = TestsPositive(Alex) is entailed by
the hypothesis H = Etc53(0.035, Alex)∧Etc42(0.94, Alex),
such that Pr(H) = 0.035× 0.94.

Previous work has explored the application of Etcetera Ab-
duction to a variety of commonsense interpretation problems
[1], [6], employing dozens or hundreds of knowledge base
axioms. As the size of the observations O and the back-
ground knowledge B grows in size, the combinatorial search
for hypotheses H becomes intractable, requiring incremental
approaches that sacrifice a guarantee of optimal solutions for
tractable search [7].

III. APPROACH

In this paper, we propose a new method for selecting the
best combination of labels for entities in the same context,
by encoding confidence, prior, and co-occurrence probabilities
in first-order logic, and using Etcetera Abduction to conduct
the combinatorial search for the most likely label set. This
section describes the three main components of our approach
to processing the output of a machine learning model applied
to multiple entities in the same context. First, we encode
the model’s class confidence distribution for each entity in a
context as a literal in first-order logic. Second, we use available
training data to estimate prior and conditional probabilities of
labels, and encode these estimates in definite clauses in first-
order logic. Third, we use Etcetera Abduction to conduct a
combinatorial search for the most probable label combination,
and evaluate the accuracy of this selection for each individual
entity.

A. Encoding confidence distributions as literals

Our method begins by encoding a model’s confidence in
label assignments as a literal in first-order logic. Nearly every
machine learning method for multi-class classification is able
to output confidence values for all possible classes when pro-
cessing a given test input, although only the most-confidence
class is typically used in accuracy evaluations. Without some
care, however, the output confidence distributions of models
are often not well-calibrated, i.e., the expected sample accu-
racy does not directly correspond to the model’s confidence. In
contemporary neural network classifiers that incorporate a final
softmax layer to produce confidence distributions, temperature
scaling has been used as an effective calibration method, where
the output entropy is raised without changing the classifier’s

accuracy [8] to produce a vector that better approximates the
class probability distribution.

Given a class probability distribution for a single entity in
a multi-entity context, we select the top N most-probable
labels (N = 4 in all of our experiments), and encode both
the labels and the probabilities as arguments (constants) in a
single literal, as follows:

Top4(classifierID, sampleID, class1, pr1,

class2, pr2, class3, pr3, class4, pr4) (10)

Here, classifierID, sampleID, class1, class2, class3, and
class4 are all represented as string constants, while the
corresponding probabilities pr1, pr2, and pr3, and pr4 are
encoded as numerical (floating-point) constants between 0 and
1. For example, the following literal encodes the top four most
confident labels from a well-calibrated image classifier:

Top4(“ResNet50”, “test32”, “tick”, 0.5331,

“snail”, 0.0383, “slug”, 0.0195, “fly”, 0.0129) (11)

During the search for the most-probable label combination,
each of the labels encoded in this literal is treated as a
candidate, with the corresponding label probability encoded
in the form of an etcetera literal. To unpack the labels and
probabilities from the encoding, we utilize a fixed set of
axioms—one for each of the N encoded possible labels—to
select a label and assign its likelihood to an etcetera literal.
For example, where N = 4, the following axiom is used to
make the assumption that the third label is the correct one:

(∀ classifierID, sampleID,

class1, pr1, class2, pr2, class3, pr3, class4, pr4)

Class(classifierID, sampleId, class3) ∧
Etc3(pr3, classifierID, sampleID, class1, pr1,

class2, pr2, class3, pr3, class4, pr4)

→ Top4(classifierID, sampleID, class1, pr1,

class2, pr2, class3, pr3, class4, pr4) (12)

During the search process, the literals that encode the con-
fidence distribution unify with consequents of these N ax-
ioms, yielding two new assumptions that logically entail the
confidence literal. For the encoding in (11) above, these two
assumptions are as follows:

Class(“ResNet50”, “test32”, “slug”) ∧
Etc3(0.0195, “ResNet50”, “test32”, “tick”, 0.5331,

“snail”, 0.0383, “slug”, 0.0195, “fly”, 0.0129) (13)

Here the Class literal is left to be further explained by back-
chaining on additional knowledge base axioms (see below),
while Etc3 becomes a factor in a hypothesis’s naı̈ve estimate
of joint probability, where Pr(Etc3) = 0.0195).



B. Encoding prior and co-occurrence probabilities as axioms

In this work, we consider two types of assumptions that
logically entail a class assignment, e.g., the Class literal in
(13), above. First, the assignment could be fully entailed by its
prior probability, which could be estimated from any available
training data. For example, the following axiom encodes the
prior probability of the class label in (13), where an etcetera
literal entails the class assignment:

(∀ classifierID, sampleID)

Etcslug(0.0007, classifierID, sampleID)

→ Class(classifierID, sampleID, “slug”) (14)

Alternatively, the label assignment could be fully entailed by
its co-occurrence with a particular label assigned to a different
entity in the same context, with the co-occurrence probability
again estimated from any available training data. For example,
the following axiom encodes the conditional probability of the
label “slug” given that the label “leaf” was assigned to a
different sample in the same context:

(∀ classifierID, sampleID, otherID)

Class(classifierID, otherID, “leaf”) ∧
Etcslug|leaf (0.2702, classifierID, sampleID, otherID)

→ Class(classifierID, sampleID, “slug”) (15)

In our experiments, we automatically generate a knowledge
base consisting of both of these types of axioms by analyzing
available training data.

C. Search for the most probable label combination

We use an open-source implementation of incremental
Etcetera Abduction [7] to identify the most probable combi-
nation of label assignments for multiple entities appearing in
the same context. The top N most-probable label assignments
for entities are encoded as literals, one literal for each entity
in the context, and passed as observations O to the reasoner,
along with the top N axioms and (automatically generated)
probability axioms as the background knowledge base B.
The reasoner identifies the most-probable hypothesis H from
candidates H, and the predicted label for each entity is
extracted from the Class literals that are entailed by H .

IV. EVALUATION 1: OBJECT CLASSIFICATION

We conducted our first set of experiments using the popular
Common Objects in Context (COCO) dataset [2], which con-
sists of photographs in everyday settings containing multiple,
annotated objects. This benchmark for object detection and
classification consists of photographs with bounding boxes,
instance masks, and keypoint annotations (see Figure 1). In
our experiments, we utilized the object detection annotations
from the 118K images in the training split and 5K images in
the validation split, where objects are classified into one of 80
object classes.

Our motivation for using the COCO dataset stemmed,
in part, from our analysis of the co-occurrence of object

Fig. 1. An example annotated photograph from the COCO dataset showing
gold-standard class labels.

classes in these photographs. We found that 76.6% of gold-
standard class label assignments in the COCO training data
split occurred in photographs where there was at least one
other object with the same class label assignment, and that the
likelihood of co-occurrence varied greatly among classes. For
example, sheep, carrot, and book very frequently co-occurred,
while toaster, hair drier, and fire hydrant co-occurred very
infrequently. In our experiments with the COCO dataset, we
focused specifically this likelihood of co-occurrence. Using the
COCO training data split, we computing both the prior and co-
occurrence probabilities for each of the 80 object classes, and
encoded these values in knowledge base axioms as etcetera
literals, as described in the previous section.

To generate class confidence distributions for each object
in the the validation split, we trained a standard ResNet-50
classifier using the COCO training data split. Each bounding
box in the dataset was resized to a resolution of 224x224
pixels, with 859k samples using for training, and 36k samples
in the validation split. The trained model was applied to each
object in the validation split, and the confidence values for
the top four class labels for each object were encoded as
first-order logical literals, as described in the previous section.
The set of confidence literals for each photograph were used
as input observations to an implementation of incremental
Etcetera Abduction [7], with search parameters of depth = 3,
window = 3, and beam = 3. The class labels for each
object were extracted from the most-probable solution, and
compared against the baseline of selecting the most confidence
class. Statistical significance (p-values) between the results of
different approaches was computed using stratified shuffling
[9].

The results in Table I show that our approach achieves
significant and substantial gains in accuracy over the baseline,
with improvements of over five percentage points.

To better understand the relative contribution of the condi-
tional and prior probabilities in improving the accuracy, we
conducted an ablation study where the conditional probability



TABLE I
OBJECT CLASSIFICATION IN THE COCO DATASET

Approach Accuracya Gain
trained classifier, confidence only (baseline) 69.22%
trained classifier, most-probable combination 74.65% +5.43%

trained classifier, priors-only (ablation) 72.40% +3.18%
CLIP classifier, confidence only (baseline) 47.85%
CLIP classifier, most-probable combination 53.77% +5.92%
aAll differences significant at p < .001

axioms were removed from the knowledge base. This is
equivalent to re-weighting the confidence scores by the prior
probability of each class label. As seen in Table I, more than
three percentage points of gains in accuracy can be achieved
using only these prior probabilities.

We also investigated whether comparable improvements
could be achieved when using zero-shot CLIP-based classifier
[10], not trained on the COCO training data split. Using text
labels corresponding to the 80 object classes in the COCO
dataset, we applied a CLIP-based classifier to each of the
bounding boxes in the validation split, and again encoded
class confidence values as input literals to Incremental Etcetera
Abduction, along with the knowledge base of prior and co-
occurrence axioms. As seen in Table I, we observed almost
six percent of gain in accuracy compared to the baseline of
selecting the most confident class.

V. EVALUATION 2: ACTION RECOGNITION

We conducted a second set of experiments for the task
of action recognition in video, using an annotated dataset of
volleyball matches [3]. Developed in support of research on
group activity recognition, this dataset contains 4830 videos
annotated with a single group activity class label among eight
possible labels (see Figure 2). In addition, each of twelve
volleyball players are individually annotated with bounding
boxes and an action label, from a set of ten possible action
class labels, e.g., standing and blocking, including a none label
when a player is out-of-view or the action was otherwise not
annotated. For our experiments, only the individual action
class labels were used, with none labels removed in our
experiments.

To generate class confidence distributions for the action
assigned to each individual player, we trained an action
recognition model using the 27K samples in the training
data split (3493 videos). The recognition model is based on
C3D network architecture [11], which uses 3D convolutional
layers to handle time dimension for action recognition. Instead
of using 2D image patches as input, the skeletal keypoints
extracted using HRNet [12] were used as input features for
training the recognition model. The network was trained for
230 epochs using SGD optimizer with initial learning rate
0.4 and Cosine Annealing LR scheduler. Since the dataset is
heavily biased toward one class label (the standing action),
directly training the model on all samples tend to overfit and
could produce a trivial model that always predict a single
label. To alleviate this issue, we oversampled the data from

Fig. 2. An example annotated video frame from Volleyball dataset showing
gold-standard class labels. Most-probable class labels are computed for each
team (six players) independently.

the less frequent classes to ensure a balanced dataset during
training. To prevent overfitting due to oversampling data,
we also applied data augmentations by randomly resizing
and horizontally flipping the key point poses. The resulting
baseline model has 79.99% top-1 classification accuracy and
62.01% mean class accuracy.

With the goal finding the most-probable combination of
individual action labels within a context, we procedurally split
the 12 players within a video into two teams and treated each
team as a separate context. Specifically, the bounding boxes
of the players were first sorted based on the X-coordinates.
Then the first 6 entries were selected as the Left team while
the last 6 entries were the Right team, creating two distinct
contexts for each video in the training and test splits.

The knowledge base of prior and conditional probabilities in
our experiment was generated automatically by analyzing the
contexts in the training data split (two for each video). We en-
coded prior probabilities (9 axioms) and pairwise conditional
probabilities for the nine action class labels (81 axioms).

Our evaluation compared our method to the baseline ap-
proach of selecting the most confident action class label for
each player. Within each team context, the confidence distri-
bution for action labels for each player was first inferred using
our trained action recognition model, then the most-probable
combination of action labels was identified using incremental
Etcetera Abduction, with search parameters of depth = 3,
window = 3, and beam = 3. Statistical significance of
observed differences was computed using stratified shuffling.

The results in Table II show that the application of our
method yields a small but statistically significant improvement
of one percent in classification accuracy. This improvement
was not as substantial as seen in the object classification
experiments. Our intuition is that this is due, in part, to the
diversity of contexts that are exhibited across the two tasks.
In the COCO experiments, the huge diversity of photograph
contexts, large number of object class labels, and varied
number of entities increases the importance of the contextual
information encoded in the knowledge base. In the volleyball
dataset, with only nine individual action classes, fixed-sized



teams, and a narrow scope of group activity across the dataset,
the relative importance of contextual information may be much
lower.

TABLE II
ACTION RECOGNITION IN THE VOLLEYBALL DATASET

Approach Accuracya Gain
trained classifier, confidence only (baseline) 79.99%
trained classifier, most-probable combination 81.00% +1.02%
aDifference significant at p < .001

VI. RELATED WORK

Instead of inferencing a single label, multi-label classifica-
tion predicts multiple attributes or class labels from a global
context such as an image. Its main challenge lies in handling
the dependency between different classes or objects. Such
label dependency could be modelled via probablistic graphical
models by learning the condtional label structure [13] or by
constructing auxiliary labels from informative label combina-
tions [14]. Since such label relationships naturally forms a
dependency graph, recent works applied graph convolutional
networks (GCN) to learn a feature representation that captures
the label correlations between objects [15], [16]. Different
from our proposed method, these previous works developed
end-to-end model that learn the label correlations as part of
the classification model. On the other hand, our method is
intended as a post-processing module that would work with a
pre-trained model that only handles individual labels. Thus it
is able to re-purpose an existing model for predicting better
labels given a global context.

VII. DISCUSSION

Logical abduction is typically used in knowledge-rich tasks,
such as commonsense reasoning, language understanding, and
diagnosis, where carefully-crafted knowledge bases encode
relevant domain information. However, in this paper we use
logical abduction primarily as a mechanism for combinatorial
search. Our specific choice of abductive reasoning, Etcetera
Abduction, allows for a Maximum A Posteriori (MAP) es-
timation where both prior and conditional probabilities are
encoded as axioms in first-order logic, automatically generated
from statistical analysis of training data splits. Viewed as
an interpretation problem, we are interpreting the uncertain
output of a trained classifier, searching for the best explanation
(combination of class labels) given what we know (prior and
conditional probabilities).

Other opportunities afforded by logical abduction remain to
be explored in future work. In particular, the relational nature
of first-order logic allows for the expression of information
about the relationships between entities and their structural
roles in the overall context. Alternative formulations of the
knowledge bases used in our experiments could support in-
ference about the joint activity of setting and spiking between
two players in the volleyball domain, or inference about the
role of the boat in separating people from bears in Figure 1.

Similarly, our approach affords the easy integration of external
information that might be known about the context itself that
might influence its interpretation, e.g., that the photograph in
Figure 1 was itself taken from a boat, or that the match in
Figure 2 was the Olympic finals.

Among the unanswered research questions is whether these
capabilities for combinatorial search and relational reasoning
can be implemented in the same neural network frameworks as
the upstream classification models. Our experiments demon-
strate that doing so would improve classifier accuracy when
applied in multi-entity contexts, and our approach highlights
the key functionalities that would need to be approximated in
future neural network architectures.
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