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1 Introduction

We have been engaged in the project of encoding commonsense theories of cognition, or how
we think we think, in a logical representation. In this paper we use the concept of a “serious
threat” as our prime example, and examine the infrastructure required for capturing the
meaning of this complex concept. It is one of many examples we could have used, but it
is particularly interesting because building up to this concept from fundamentals, such as
causality and scalar notions, highlights a number of representational issues that have to be
faced along the way, where the complexity of the target concepts strongly influences how we
resolve those issues.

We first describe our approach to definition, defeasibility, and reification, where hard
decisions have to be made to get the enterprise off the ground. We then sketch our approach
to causality, scalar notions, goals, and importance. Finally we use all this to characterize
what it is to be a serious threat. All of this is necessarily sketchy, but the key ideas essential
to the target concept should be clear.

2 Characterization and Defeasibility

In order to get started in encoding commonsense knowledge, one must build up a great
deal of conceptual and notational infrastructure, and make a large number of warranted but
highly controversial decisions about representation.

Among the first of these involves how tightly we can hope to define or characterize
commonsense concepts. Our view is that where we can define a concept by necessary and
sufficient conditions, that is good, but it is the exception rather than the rule. In general, the
most we can hope to do is characterize concepts with lots of necessary conditions and lots
of sufficient conditions. For example, we can’t hope to define causality, but we can specify
several key properties that follow from a causal relation between events, and we can list a
great many pairs of causes and effects. By adding axioms, we constrain the set of possible
interpretations of the predicates. It should be mentioned that this is not always done in
efforts to encode commonsense knowledge. It is a common criticism that OpenCyc [14, 3] is
axiomatically poor; a prose description is given for a predicate that is introduced, but the
set of axioms involving the predicate in general do not begin to constrain its interpretation
to what the description says it means. In an early version of another popular large-scale
ontology, the predicate “near” had only the property of being symmetric, which does not
distinguish it from “far”. In our effort, we have tried to focus on the axioms that delimit
the meanings of predicates, rather than relying on the reader’s intuition about the meaning
of a term.

A related property of formalizations of commonsense knowledge is the defeasibility of
the rules. Inferences can be drawn that subsequently must be retracted because of further



information. The notation in which the axioms are expressed can be first-order logic, but
there has to be a nonmonotonic proof procedure applied to them. The one we have assumed
is weighted abduction [13], but our formalization could be adapted to any other approach
to nonmonotonicity.

For a notation, we use a subset of Common Logic [2], essentially, textbook logic in a
LISP-like format. In weighted abduction, it is possible to include “et cetera” predications in
the antecedents of Horn clauses to indicate that other unspecified conditions may be relevant
to the conclusion. Thus, an axiom saying that p defeasibly implies q might be written

(forall (x) (if (and (p x)(etc-i x)) (q x)))

where i is unique to this axiom. The “et cetera” predications can be thought of as the
negations of McCarthy’s abnormality predications in circumscriptive logic [16]. In weighted
abduction, they are never proved, but they can be assumed and thereby become part of the
best abductive proof of the goal expression.

In this paper, we will abbreviate an axiom like the above to

(forall (x) (if (and (p x)(etc)) (q x)))

where (etc) is understood to stand for an “et cetera” predicate unique to this axiom applied
to all the universally quantified variables whose scope it is within. More generally, the reader
can view (etc) as simply an indication of the defeasibility of the rule, to be dealt with by
the nonmonotonic inference procedure of choice.

3 Reification and Eventuality Types and Tokens

The domain of discourse for our logical theories is the class of possible individual entities,
states, and events. They may or may not exist in the real world, and if they do, it is one of
their properties, expressed as (Rexist x). For example, in representing the sentence “John
worships Zeus,” both John and Zeus are in the universe of possible individuals, but only
John really exists.

In a narrowly focused inquiry it is often most perspicuous to utilize specialized notations
for the concepts under consideration. But our view is that in a broad-based effort like ours,
this is not possible, and that it can be avoided by sufficient judicious use of reification.

For example, we treat sets as first-class individuals. Moreover, sets are taken to have
“type elements”, whose principal feature is that their properties are inherited by the real
elements of the sets [15, 8, 11]. The expression (typelt x s) says that x is the type element
of set s.

The term “eventuality” is used to cover both states and events [7, 9]. Eventualities like
other individuals can be merely possible or can really exist in the real world. A notational
convention we use is that whereas the expression (p x) says that predicate p is true of x,
the expression (p’ e x) says that e is the eventuality of p being true of x. The relation
between the primed and unprimed predicates is given by the axiom schema

(forall (x) (iff (p x)(exist (e)(and (p’ e x)(Rexist e)))))

Eventuality arguments allow us to specify properties of eventualities without introducing
scoping. “Pat has the goal of Chris’s being happy” could be represented

(and (goal E P)(happy’ E C))

That is, E is a goal of Pat’s, where E is the eventuality of Chris’s being happy.
Eventualities are very finely individuated. For example, Pat’s walking to work and Pat’s

going to work are two different eventualities. The reason for this is that they may have
different properties. The walking may be fast while the going isn’t.



Eventualities are therefore very nearly in one-one correspondence with predications in
the logic, and we can be somewhat cavalier about the distinction. For example, we can speak
of the “arguments” of eventualities as a way of referring to the participants in the states or
events. The expression (argn x 1 e) says that x is the first direct argument of e, and the
expression (arg x e) says that x is some direct argument of e. Since eventualities can be
the arguments, it is useful to define a recursive equivalent of “argument”.

(forall (x e1)

(iff (arg* x e1)

(or (arg x e1)(exist (e2)(and (arg e2 e1)(arg* x e2))))))

Thus, in the above expression, C is an arg* of the eventuality of P’s having goal E. We can
think of (arg* x e) as saying that x is somehow involved in eventuality e.

We have explicitly modelled substitution in axioms (cf. [8]). The expression (subst x1
e1 x2 e2) can be read as saying that x1 plays the same role in eventuality e1 that x2
plays in eventuality e2, where e1 and e2 have the same predicate. Similarly, the expression
(subst2 x1 y1 e1 x2 y2 e2) says that x1 and y1 play the same roles in eventuality e1
that x2 and y2 play in eventuality e2, respectively.

Eventualities can have type elements of sets as their arguments, and when they do, they
are eventuality types. An instanceOf relation relates eventuality types and tokens. If e1 is
an eventuality type whose only type element is x, the type element of set s, y is a member
of s, and e2 is an eventuality such that (subst x e1 y e2) holds, then e2 is an eventuality
token and an instance of e1.

Conjunctions, disjunctions, implications, and negations of eventualities are eventualities
as well. The expression (not’ e1 e2) says that e1 is the eventuality of eventuality e2’s not
really existing.

We have axiomatized a theory of time [12], and eventualities can have temporal proper-
ties. The expression (atTime e t) says that eventuality e occurs at time t. Thus, we use
temporal properties rather than temporal arguments for eventualities.

The idea of reifying events is usually attributed to Davidson ([4]), although he was
reluctant to reify states as well, and he did not individuate events as finely as we do. The
linguist Emmon Bach ([1]) recognized the need for a concept that covered both states and
events and introduced the term “eventuality”. A brief exposition of eventualities as used
here can be found in [7] and a more extensive exposition in [9]. The latter contains a number
of arguments for the need for eventualities, ways of looking at eventualities, and arguments
for very fine individuation.

4 Causality

The account of causality we employ is that of [10]. This distinguishes between the monotonic,
precise notion of “causal complex” and the nonmonotonic, defeasible notion of “cause”. The
former gives us mathematical rigor; the latter is more useful for everyday reasoning and
can be characterized in terms of the former. We begin with an abbreviated account of these
concepts.

When we flip a switch to turn on a light, we say that flipping the switch caused the light
to turn on. But many other factors had to be in place. The bulb had to be intact, the switch
had to be connected to the bulb, the power had to be on in the city, and so on. We will
use the predicate cause for flipping the switch, and introduce the predicate causalComplex
to refer to the set of all the states and events that have to hold or happen for the effect to
happen. The states of the bulb, the wiring, and the power supply would all be in the causal
complex.



Causal complexes have two primary features. The first is that if all of the eventualities
in the causal complex obtain or occur, then so does the effect. The second is that each of
the members of the causal complex is relevant, in the sense that if it is removed from the
set, the remainder is not a causal complex for the effect.

In practice, we can never specify all the eventualities in a causal complex for an event.
So while the notion gives us a precise way of thinking about causality, it is not adequate for
the kind of practical reasoning we do in planning, explaining, and predicting. For this, we
need the defeasible notion of “cause”.

In a causal complex, for most events we can bring about, the majority of the eventualities
are normally true. In the light bulb case, it is normally true that the bulb is not burnt out,
that the wiring is intact, that the power is on in the city, and so on. What is not normally
true is that someone is flipping the light switch. Those eventualities that are not normally
true are identified as causes. They are useful in planning, because they are often the actions
that the planner or some other agent must perform. They are useful in explanation and
prediction because they frequently constitute the new information. They are less useful for
diagnosis, because diagnosis is employed exactly when the normal cause fails to bring about
its normal effect, and the rest of the causal complex has to be examined.

In [10] the interpretation of the predicate cause is constrained by axioms involving
the largely unexplicated notion of “presumable”; most elements of a causal complex can be
presumed to hold, and the others are identified as causes. We won’t repeat that development
here, but we will place some looser constraints on causes.

First, a cause is an eventuality in a causal complex.

(forall (e1 e2)

(if (cause e1 e2)

(exist (s)(and (causalComplex s e2)(member e1 s)))))

This allows only single eventualities to be causes, and of course many events have multiple
causes. But this is not a limitation because we can always bundle the multiple causes into a
single conjunction of causes. So if e1 is pouring starter fluid onto a pile of firewood and e2
is lighting a match, then the cause of the fire starting is e3 where (and’ e3 e1 e2) holds.

The principal useful property of cause is a kind of causal modus ponens. When the cause
happens or holds, then, defeasibly, so does the effect.

Causality is not strictly speaking transitive. Shoham ([17]) gives as an example that
making a car lighter causes it to go faster, and taking the engine out causes the car to be
lighter, but taking the engine out does not cause the car to go faster. In the second action,
we have undone one of the presumable conditions in the causal complex for the first action.
The two causal complexes are inconsistent. However, when they are consistent, cause is
transitive, so it is defeasibly transitive.

(forall (e1 e2 e3)

(if (and (cause e1 e2) (cause e2 e3) (etc))(cause e1 e3)))

Hobbs ([10]) is explicit about exactly what the content of the “et cetera” predicate is, in
terms of presumable eventualities.

A causal complex consists of causes and other, presumable or nonproblematic, eventu-
alities. The latter are frequently referred to as enabling conditions or preconditions. In the
STRIPS model of Fikes and Nilsson [5] that has become the standard model for planning in
artificial intelligence, the enabling conditions correspond to the preconditions and the body
corresponds to the cause. The added and deleted states correspond to the effect.

5 Scales

A scale is a set of entities with a partial ordering among them.



(forall (s)

(if (scale s)

(exist (s1 e x y)

(and (componentsOf s1 s)(partialOrdering e x y s)))))

The predicate componentsOf is explicated further in a theory of composite entities not
discussed here [11]. The expression (partialOrdering e x y s) says that e, an eventuality
type, is the relation of some x being less than some y, where x and y are components of the
scale s.

(forall (e x y s)

(if (partialOrdering e x y s)

(and (scale s)(arg* x e)(arg* y e))))

In more conventional notation, we can think of e as a lambda expression and x and y as
its two bound variables. However, since the subst predicate described above works equally
well on types and tokens, we don’t need to specify that x and y are variables, or types, or
type elements, or anything else.

It is generally more convenient to speak directly of the partial ordering relation among
elements. We can define a “less than” relation as follows, using the predicate name lts to
indicate that it is relative to a particular scale s.

(forall (e1 x1 y1 s)

(iff (lts’ e1 x1 y1 s)

(exist (e x y)

(and (partialOrdering e x y s)

(subst2 x y e x1 y1 e1)))))

Then the standard properties of partial orderings can be defined in terms of the predicate
lts. The partial ordering is antireflexive, antisymmetric, and transitive. We also define the
“less than or equal” relation.

We have frequent occasion to define particular scales. This is done by specifying the set
of entities that are the components of the scale, and the relation that is the partial ordering
of the scale.

(forall (s s1 e)

(iff (scaleDefinedBy s s1 e)

(and (scale s)(componentsOf s1 s)

(exist (x y) (partialOrdering e x y s)))))

It is convenient to define a component of a scale, (componentOf x s), as a member of
its set of components. We can define subscales and the top and bottom of a scale in the
obvious way.

Suppose we have two scales with the same set of components. Then we can define a
composite scale that is consistent with the two original scales. For example, suppose the set
is points in the United States, in the first scale the partial ordering (in this case total) is
“northOf”, and in the second scale the partial ordering is “eastOf”. Then in the composite
scale the partial ordering is at least consistent with the “northAndEastOf” relation. We may
in addition impose further structure on the composite scale, for example, by saying that the
“northOf” relation takes precedence.

The loose constraints on a composite scale are as follows:

(forall (s s1 s2)

(if (compositeScale s s1 s2)

(and (exist (s3)

(and (componentsOf s3 s1)(componentsOf s3 s2)



(componentsOf s3 s)))

(forall (x y)

(if (and (lts x y s1)(leqs x y s2))(lts x y s)))

(forall (x y)

(if (and (leqs x y s1)(lts x y s2))(lts x y s))))))

The same set s3 is the set of components of the two original scales and the composite scale.
If an entity x is less than an entity y on one of the original scales and less than or equal to
y on the other, then it is less than y on the composite scale.

There is a range of structures we can impose on scales. These map complex scales into
simpler scales. For example, in much work in qualitative physics the actual measurement
of some parameter may be any real number, but this is mapped into one of three values –
positive, zero, and negative. Where the parameter is vertical velocity, this means we are only
interested in whether something is going up, staying at the same elevation, or going down.

We have introduced another sort of structure on scales, one reflected in language. What
we have defined so far is adequate for characterizing the comparative and superlative forms
of adjectives – “taller” and “tallest” – but not for the absolute form of adjectives – “tall”.
In natural language and in qualitative reasoning we often characterize something as being
in the high or low region of a scale, with no more precise characterization of its location.
We will call these regions the Hi and Lo regions of the scale. Each of these predicates is a
relation between a scale s and one of its subscales s1 – (Hi s1 s). The top of the scale, if
there is one, is the top of the Hi region of the scale, and the bottom of a scale is the bottom
of its Lo region. The bottom of the Hi region and the top of the Lo region will rarely be
known exactly. There is no well-established height that is the minimum height that counts
as tall. Nevertheless, we can say that if a point is in the Lo region, then it is less than all
the points in the Hi region.

It is often useful to go from the absolute form of an adjective to its underlying scale, for
example, from “tall” to the height scale. We use the predicate scaleFor for this relation.

(forall (s e)

(iff (scaleFor s e)

(exist (s1)

(and (Hi s1 s)

(forall (e1 x)

(if (and (componentOf’ e1 x s1)(argn x 1 e))

(iff (Rexist e)(Rexist e1))))))))

For example, suppose we have (tall’ e x), that is, e is the property of x’s being tall. Then
s is the height scale, s1 is the Hi region of the height scale, and whenever we have a relation
e1 of x being in that Hi region, then e1 holds exactly when e holds. That is, some entity x is
tall exactly when x is in the Hi region of the height scale. The height scale is the scaleFor
the property “tall”. In line 6 we specify that x must be the first argument of e, because if
there are multiple arguments, we need to say which one is the relevant argument placed on
the scale.

There are two primary external theories that a theory of the qualitative structure on
scales should link to. The first is an as-yet-to-be-developed commonsense theory of distribu-
tions. The Hi and Lo regions usually correspond to the right and left tails of a distribution.
As a first approximation, we can say that if something is in the Hi region of a scale, then
defeasibly it is higher on the scale than most entities in some contextually deteermined
comparison set.

The second is a theory of functionality or goals, as outlined in Section 6. Often when
we say that an entity is tall, we mean that it is tall enough for something or too tall for



something. Discovering that something is recognizing the connection between qualitative
scalar judgments and functionality.

More specifically, we can say that, defeasibly, if something is in the Hi region of a scale,
then that property plays a causal or enabling role in some agent’s goal being achieved or
not being achieved. We can state this as follows:

(forall (e x s1 s)

(if (and (componentOf’ e x s1)(Hi s1 s)(etc))

(exist (c a g g1)

(and (member e c)(goal g a)

(or (causalComplex c g)

(and (not’ g1 g)(causalComplex c g1)))))))

That is, if e is the property of x being in the Hi region s1 of some scale s, then defeasibly e
is part of a causal complex c that will bring about some agent a’s goal g or its negation g1.
This axiom does not tell us who the agent is or what the goal is. That has to be determined
from context. But it does alert us to the possible relevance of such a goal.

We axiomatize the notion of a “likelihood scale”, as a qualitative, commonsense concept
corresponding to standard probability and of which standard probability is one possible
model. Space precludes presenting the details of this.

6 Agents and Goals

An agent is an entity that can, in the commonsense view of things, initiate a causal chain.
People are agents. When someone decides to stand up and cross the room, there are neural
events that are causing this, but we normally don’t carry our analysis of the event to this
level. We view the person’s decision as the initial cause. Higher animals, organizations, and
complex artifacts are also often viewed as agents.

Commonsense psychology is about people, but most of it applies more generally to agents.
Agents have beliefs. We take the objects of belief to be eventualities. Because eventualities
are very finely individuated, there is a straightforward translation between talking of belief
in an eventuality and belief in a proposition. The expression (believe a e) can be read
as saying that agent a believes the proposition that eventuality e really exists. We have
developed but not included here our treatment of belief [6] because of space limitations and
because it breaks no new ground in the abundant literature on logics of belief. Our use of
the predicate here should be obvious and unproblematic.

Human beings are intentional agents. We have goals, we develop plans for achieving these
goals, and we execute the plans. We monitor the executions to see if things are turning out
the way we anticipated, and when they don’t, we modify our plans and execute the new
plans. The concept of a goal is central to this formulation.

The key concept in modeling intentional behavior is that of an agent a having some
eventuality type e as a goal. The expression (goal e a) says that eventuality e is a goal
of agent a. Normally, e will be an eventuality type that can be satisfied by any number of
specific eventuality tokens, but it is entirely possible in principle for an agent to have an
eventuality token as a goal, where there is only one satisfactory way for things to work out.
We won’t belabor the distinction here.

Agents know facts about what causes or enables what in the world, in most cases, facts
of the form

(forall (e1 x)

(if (p’ e1 x) (exist (e2)(and (q’ e2 x)(cause e1 e2)))))



and a similar axiom for enable. That is, if e1 is the eventuality of p being true of some
entities x, then there is an eventuality e2 that is the eventuality of q being true of x and e1
causes or enables e2. Or stated in a less roundabout way, p causes or enables q.

The agent uses these rules to plan to achieve goals and to infer the goals and plans of
other agents. A plan is an agent’s way of manipulating the causal properties of the world to
achieve goals, and these axioms express causal properties.

We will work step by step toward a characterization of the planning process. The first
version of the axiom we need says that if agent a has a goal e2 and e1 causes e2, then a
will also have e1 as a goal.

(forall (a e1 e2) (if (and (goal e2 a)(cause e1 e2))(goal e1 a)))

This is not a bad rule, and certainly is defeasibly true, but it is of course necessary for the
agent to actually believe in the causality, and if the agent believes a causal relation that does
not hold, e1 may nevertheless be adopted as a goal. The causal relation needn’t be true.

(forall (a e0 e1 e2)

(if (and (goal e2 a)(cause’ e0 e1 e2)(believe a e0))(goal e1 a)))

We can say furthermore that the very fact that a has goal e2 causes a to have goal e1. We
do this by reifying the eventuality g2 that e2 is a goal of a’s, and similarly g1. (The e’s in
this axiom are the eventualities of having something; the g’s are the eventualities of wanting
it.)

(forall (a e0 e1 e2 g2)

(if (and (goal’ g2 e2 a)(cause’ e0 e1 e2)(believe a e0))

(exist (g1)(and (goal’ g1 e1 a)(cause g2 g1)))))

That is, if agent a wants e2 and believes e1 causes e2, that wanting will cause a to want
e1. (The belief is also in g1’s causal complex, but that would not normally be thought of as
the cause: Why do you want e1? Because I want e2.)

Note that while the antecedent and the consequent no longer assert the real existence of
having the goal (i.e., g2 and g1), if we know that g2 really exists, then the real existence of
g1 follows from the properties of cause.

Note also that the predicate goal reverses causality. For example, because flipping a light
switch causes a light to go on, having the goal of the light being on causes one to want to
flip the switch.

The eventuality e1 is a “subgoal” of e2, and we encode this in the axiom.

(forall (a e0 e1 e2 g2)

(if (and (goal’ g2 e2 a)(cause’ e0 e1 e2)(believe a e0))

(exist (g1)

(and (goal’ g1 e1 a)(cause g2 g1)(subgoal e1 e2 a)))))

Finally, this axiom is not always true. There may be many ways to cause the goal condition
to come about, and the mystery of the agent’s free choice intervenes. The axiom is only
defeasible. We can represent this by means of an “et cetera” proposition in the antecedent.

(forall (a e0 e1 e2 g2)

(if (and (goal’ g2 e2 a)(cause’ e0 e1 e2)(believe a e0)(etc))

(exist (g1)

(and (goal’ g1 e1 a)(cause g2 g1)(subgoal e1 e2 a)))))

That is, if agent a has a goal e2 (where g2 is the eventuality of wanting e2) and a believes
e1 causes e2, then defeasibly this wanting e2 will cause a to want e1 as a subgoal of e2
(where g1 is the eventuality of wanting e1).

A similar succession of axioms can be written for enablement.
The “subgoal” relation is a relation between two goals, and implies the agent’s belief

that the subgoal is in a causal complex for the goal.



(forall (e1 e2 a)

(if (subgoal e1 e2 a)

(and (goal e2 a)(goal e1 a)

(exist (e3 e4 e5 s)

(and (causalComplex’ e3 s e2)(member’ e4 e1 s)

(and’ e5 e3 e4)(believe a e5))))))

In lines 5-6 of this axiom, e3 is the proposition that s is a causal complex for e2, e4 is the
proposition that e1 is a member of s, e5 is the conjunction of these two propositions, and
that’s what agent a believes.

Goals do not have to be directly achievable by actions on the part of the agent, but
successful plans have to bottom out in such actions or in states or events that will happen
or hold at the appropriate time anyway.

It is formally convenient to assume that agents have one plan that they are always
developing, executing, monitoring and revising, and that that plan is in the service of a
single goal. We will call this goal “Thriving”.

(forall (a) (if (agent a)(exist (e)(and (goal e a)(thrive’ e a)))))

More specific goals arise out of the planning process using the agents’ beliefs about what
will cause them to thrive.

The main reason for positing this top-level goal is that now instead of worrying about
the mysterious process by which an agent comes to have goals, we can address the planning
problems of what eventualities the agent believes cause other eventualities, including the
eventuality of thriving, and of what alternative subgoals the agent should choose to achieve
particular goals. We are still left with the problem of when one goal should be given priority
over another, but this is now a plan construction issue.

We will not attempt to say what constitutes thriving in general, because there are huge
differences among cultures and individuals. For most of us, thriving includes staying alive,
breathing, and eating, as well as having pleasurable experiences. But many agents decide
they thrive best when their social group thrives, and that may involve agents sacrificing
themselves. This is a common view in all cultures, as seen in suicide bombers, soldiers going
into battle, and people risking death to aid others. So thriving does not necessarily imply
surviving.

A good theory of commonsense psychology should not attempt to define thriving, but it
should provide the materials out of which the beliefs of various cultures and individuals can
be stated in a formal manner.

7 Importance

Many scales, including the scale of importance, cannot be defined precisely, but constraints
can be placed on their partial ordering. That is what we will do here.

A concept, entity or eventuality is more or less important to an agent depending its
relation to the agent’s goals. The “more important” relation is thus a partial ordering that
depends on the agent. The expression (moreImportant x1 x2 a) says that something x1
is more important than something else x2 to agent a. We place no constaints on the things
x1 and x2 whose importance is being measured. They can be anything.

A plan can be thought of as a tree-like structure representing the subgoal relation. The
higher a goal is in an agent’s plan to thrive, the more important it is to the agent, because
of the greater amount of replanning that has to be done if the goal cannot be achieved. So
the first constraint we can place on the importance scale is that it is consistent with the
subgoal relation.



However, this is a bit tricky to specify because an eventuality can be a subgoal of a number
of different higher-level goals in the same plan, and we do not want to say an eventuality
is of little importance simply because one of its supergoals is of little importance. So we
first need to define the notions of an “upper bound supergoal” and a ”least upper bound
supergoal”. An eventuality e1 is an upper bound supergoal of e2 if it is a supergoal of all
of e2’s immediate supergoals. More precisely, any supergoal of e2’s must either be e1, be a
subgoal of e1, or be a supergoal of e1.

(forall (e1 s a)

(iff (ubSupergoal e1 s a)

(and (agent a)(goal e1 a)

(forall (e2) (if (member e2 s)(subgoal e2 e1 a)))

(forall (e2 e) (if (and (member e2 s)(subgoal e2 e a))

(or (subgoal e e1 a)(eq e e1)

(subgoal e1 e a)))))))

The expression (ubSupergoal e1 s a) says that e1 is an upper bound supergoal of all the
goals of agent a in set s. The predicate holds if and only if any eventuality e which is a
supergoal of a member e1 of s is either a subgoal of e1, e1 itself, or a supergoal of e1.

A goal e1 is a least upper bound supergoal if it is an upper bound supergoal and a
subgoal of all other upper bound supergoals.

(forall (e1 s a)

(iff (lubSupergoal e1 s a)

(and (ubSupergoal e1 s a)

(forall (e)

(if (ubSupergoal e s a)

(or (eq e e1)(subgoal e1 e)))))))

Because every goal is ultimately in the service of the top-level goal “To Thrive”, every goal
has a least upper bound supergoal.

Now we can say that if eventuality e1 dominates eventuality e2 on every path in the
agent’s plan that includes e2, then e1 is more important than e2. Every reason for wanting
e2 is in the service of e1.

(forall (s e1 e2 a)

(if (and (member e2 s)(lubSupergoal e1 s a))

(moreImportant e1 e2 a)))

More generally,we can say that the least upper bound supergoal of a set of goals is more
important than the whole set, since all the members of the set are in the service of the
supergoal.

(forall (s e a)

(if (lubSupergoal e s a)(moreImportant e s a)))

An agent’s goals are important. So are eventualities that affect the agent’s goals. Importance
doesn’t care about polarity; if passing a course is important to you, so is not passing the
course. Thus, we define an eventuality as “goal-relevant” to an agent, (goalRelevant e
a), if its existence implies the existence or nonexistence of one of the agent’s goals. The
“goal consequences” of an eventuality, (goalConsequences s e a), are those goals of the
agent’s whose existence or nonexistence is implied by by the eventuality. Then we can say
the importance of an eventuality depends on the importance of its goal consequences. That
is, if something x is more important than the goal consequences of eventuality e, then x is
more important than e.

The importance of an entity depends on the importance of its properties and of the
events it participates in. Thus, we define the set of “goal-relevant properties”.



(forall (s x a)

(iff (grProps s x a)

(forall (e)

(iff (member e s)(and (arg* x e)(goalRelevant e a))))))

The expression (grProps s x a) says that s is the set of the set of properties of x that are
relevant to a goal of qa’s.

The next axiom says that the importance of an entity depends on the importance of its
goal-relevant properties.

(forall (s x a)

(if (and (moreImportant s x1 a)(grProps s x2 a))

(moreImportant x2 x1 a)))

To summarize, x1 is more important than x2 to a if x2 is, or affects something that is,
or has properties that affect something that is, in the service of x1. Note that there may
be other properties constraining the moreImportant relation, but this one at least is among
the most significant.

8 Threats and Seriousness

A threat situation is one in which the agent believes that things could turn out badly. To
formalize this notion, we say that the agent a believes there is an eventuality e in a causal
complex s whose effect e0 would cause one of a’s goals not to be realized. The definition of
a threat situation is as follows:

(forall (e s e0 a g)

(iff (threatSituation e s e0 a g)

(exist (e1 e2)

(and (believe a e1)(member’ e1 e s)(causalComplex s e0)

(cause e0 e2)(not’ e2 g)(goal g a)))))

The expression (threatSituation e s e0 a g) says that e is a threat by virtue of being
a member of causal complex s with effect e0 which threatens agent a’s goal g. In line 4 e1
is the eventuality of e’s being in the causal complex; agent a believes this to be the case. In
line 5 e2 is the eventuality of goal g not obtaining.

Threats may be real, imaginary, or just imagined. These would be further properties of
e and perhaps s.

The participating entities in a threat situation can be labelled by their role. In particular,
the initiating event e is the threat.

(forall (e s e0 a g)

(if (threatSituation e s e0 a g)(threat e a)))

That is, e is the threat to agent a.
Because the threat is only one element of the causal complex, the effect is only a possi-

bility, not an inevitability. We generally refer to something as a threat when some evasive
action is still possible.

Because of space considerations, this treatment of threats is actually somewhat simpli-
fied from that presented in [6]. There rather than mere belief, we have the agent in the
dynamic process of envisioning a branching causal structure, one branch of which leads to
the undesirable consequence.

A threat can be more or less serious to an agent. Seriousness is a composite scale that
depends on importance and likelihood. Of two equally likely threats, the more important
one is more serious. Of two equally important threats, the more likely is more serious. This
composition of scales is captured in the predicate compositeScale introduced in Section 5.
The likelihood scale was introduced in Section 5. The importance scale was introduced in
Section 7. Hence, the definition of the “seriousness” scale is as follows:



(forall (s a)

(iff (seriousnessScale s a)

(exist (s1 s2)

(and (likelihoodScale s1)(importanceScale s2 a)

(compositeScale s s1 s2)

(forall (e1)

(if (componentOf e1 s)(threat e1 a)))))))

Lines 4-5 say that the seriousness scale is a composite of the likelihood scale and the impor-
tance scale. Lines 6-7 say that the elements of the scale are threats.

In terms of this we can define the partial ordering “more serious”.

(forall (e e1 e2 a)

(iff (moreSerious’ e e1 e2 a)

(exist (s s1)

(and (seriousnessScale s a)(scaleDefinedBy s s1 e)))))

The expression (moreSerious’ e e1 e2 a) says that e is the eventuality of one threat e1
being more serious than threat e2 to agent a. The predicate scaleDefinedBy, introduced
in Section 5, relates a scale to its set of elements and its partial ordering.

We can define the qualitive predicate serious in terms of the Hi region of the scale, via
the predicate scaleFor.

(forall (e e1 a)

(iff (serious’ e e1 a)

(exist (s)

(and (seriousnessScale s a)(scaleFor s e)))))

The expression (serious’ e e1 a) says that e is the eventuality of threat e1 being serious
to agent a. The predicate scaleFor relates a scale to the qualitative predicate of something
being in the Hi region of the scale.

Thus, for a threat to an agent to be serious, it has to be high on a scale of seriousness,
where “high” is related to the agent’s goals, most likely in this case the goals of the agent’s
that are the focus of the threat. Seriousness in turn is characterized in terms of likelihood
and importance of the threatened action. Importance is characterized by the action’s causal
impact on a goal of the agent’s and that goal’s place in the agent’s subgoal hierarchy, or
plan, for achieving the overarching goal of thriving.

9 Conclusion

Sophisticated natural language understanding will require a large knowledge base of com-
monsense knowledge. Much of that can be acquired automatically from large corpora and
existing resources. But the very core of such a knowledge base will consist of rules that are
too abstract and too complex for any automatic acquisition methods we can imagine today.
It will require the manual encoding of theories such as we have described here for causality,
scales, and goals. However, once these theories are explicated, some complex and deep ac-
counts of meanings of difficult words can be constructed. We have demonstrated what this
would look like for two particularlly difficult words, “serious” and “threat”. These are just
two representative examples of the knowledge we need and are in the position to begin to
provide.
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