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Abstract 
In this paper we describe the architecture of an interactive 
story generation system where a human and computer each 
take turns writing sentences of an emerging narrative. Each 
turn begins with the user adding a sentence to the story, 
where the computer responds with a sentence of its own that 
continues what has been written so far. Rather than 
generating the next sentence from scratch, the computer 
selects the next sentence from a corpus of tens of millions of 
narrative sentences extracted from Internet weblogs. We 
compare five different retrieval methods for selecting the 
most appropriate sentence, and present the results of a user 
study to determine which of these models produces stories 
with the highest coherence and overall value. 

Introduction   
The automated generation of fictional stories has proven to 
be an extremely challenging problem in Artificial 
Intelligence. Recent work in this area has produced 
impressive results in narrow domains  (Riedl and Leon 
2008; Cheong and Young 2006; Riedl and Young 2004), 
but has been limited by the availability of knowledge 
resources that support open-domain reasoning about 
events, as well as the difficulties in generating fluid natural 
language from these formalisms. Previously, we introduced 
a new approach to story generation that attempts to address 
these limitations by casting the problem as a massive-scale 
collaborative writing project (Swanson and Gordon 2008). 
In this approach, a user and a computer collaboratively 
author new stories in an interactive fashion, where each 
repeatedly takes turns contributing new sentences to an 
unfolding narrative. Whereas sentences contributed by the 
human user are limited only by their creativity, the 
sentences provided by the computer are selected from tens 
of millions of narrative sentences automatically extracted 
from Internet weblogs. Despite the simplicity of this 
approach and the lack of restrictions on the narrative 
domain, the stories that can be generated are often both 
coherent and entertaining, as in the following example: 

I came home from work and my neighbor had cut 
down all of the trees in my yard. The magnificent 

                                                
Copyright © 2009, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 

huge fir tree in the backyard hit the neighbor's roof. I 
guess that made him mad enough to cut down all my 
trees when I was gone at work. I was relieved to find 
that he had only just left and was still in sight. I 
picked up a shovel and crept up behind him. He 
reached for the door handle and began to turn it 
slowly before wrenching the door open. I used all my 
strength and wacked him on the head with the shovel. 
It was covered in blood and maggots. Someone had 
used the same shovel earlier to bury their dog who 
was hit by a car. The wife says I have a bad attitude. 
Let's see how she feels when some cuts down all the 
trees in her yard. 

The original system (Say Anything) described by Swanson 
and Gordon (2008) employed an extraordinarily simple 
strategy for selecting an appropriate sentence to contribute 
during the computer’s turn. Although these early results 
were promising, this work highlighted a number of 
problems that limited the coherence and quality of the 
stories. To tackle these problems, we developed a new 
version of the Say Anything system that would allow us to 
investigate issues of coherence and quality by evaluating 
the performance of five competing retrieval models. 
 This paper describes our revision of the Say Anything 
story generation system and presents the results of our 
evaluation of competing retrieval models. We begin by 
describing the new system architecture and user interface, 
followed by a description of the five competing retrieval 
models of our evaluation. We then present our evaluation 
of these models, first through a qualitative analysis of 
several example stories produced by different models, and 
second through a quantitative analysis of user judgments 
and authoring behavior. 

Architecture  
The Say Anything architecture follows a simple approach, 
illustrated in figure 1. It is a cyclical process involving a 
human and computer contributing alternating sentences to 
a narrative story. Each turn begins with a human user 
writing a sentence and is completed by the computer 
returning a sentence in response. The computer performs 
three major operations in an attempt to generate a sentence 
that is cohesive with what has been written so far. First, it 



analyzes the story, including the user’s current input. This 
analysis is used to retrieve a sentence from a large story 
database. A story in the database is selected based on a 
measure of similarity to the user’s current input. The 
retrieved story is treated as an approximation of the current 
state in the user’s story. The next sentence of this story is 
then chosen as the continuation of the user’s developing 
narrative. To better integrate this sentence into the user’s 
story, a post-processing adaptation step is performed. In 
this section we discuss the user interface to our system and 
the main components of the generation process in more 
detail. 

User Interface 
To facilitate the authoring of stories, we designed a web-
based interface to the Say Anything system. The main 
screen of this user interface provides a workspace for 
collaboratively authoring a new story, where the user’s 
burgeoning story is presented near the top of the page. A 
text box for typing the next sentence of the story, along 
with controls allowing the user to continue or finish the 
story, is positioned below this text box. After entering a 
new sentence, it is appended to the bottom of the story, 
followed by a sentence selected by the computer to move 
the story forward. At any time during this process, the user 
may click on a computer-generated sentence, revealing a 
pop-up menu that presents nine other alternate sentences 
that the user can choose from instead. We believed this 
functionality would give users more opportunity to 
continue their story in case a highly irrelevant or 
objectionable sentence was initially returned. It also 
allowed us to conduct a more fine-grained analysis of 
coherence without having to bother the user with 
judgments after every sentence. Finally, once the user 
chooses to end their story, they are asked to give it a title 
and rate it on two criteria, which are described in the 
evaluation section of this paper. 
 Although story generation is the primary focus of our 
system, we also included several other elements in our 

interface that we believed would improve our research and 
make the system more enjoyable for the user. Not only did 
we want to collect ratings from the author of a particular 
story, but we also wanted feedback from users of our 
system who did not write the story. To accomplish this we 
created a separate page where users could read and rate 
stories written by other users. Finally, to help encourage 
our users to participate with the system we included two 
additional pages; one in which they could read the top 
ranked stories and another in which they could view all of 
their previously written compositions. 

Story Database 
There are two general options in the design of a story 
database. On one hand we could randomly sample a set of 
real world stories and construct a relatively small but 
highly structured formal model from an analysis of these 
stories. On the other hand we could maintain a relatively 
large unstructured database by leaving the stories relatively 
intact. A small highly structured library enables a more 
fine-grained control over how the system interprets and 
responds to the input. For example, formal representation 
of events and predicates in the domain would allow for 
deep interpretation and well defined rules for progressing 
to allowable states in the narrative development. For 
example, Mueller (2006) proposes such a knowledge-base 
in the domain of restaurant activities. 
 Despite the potential benefits of a small set of structured 
representations, there are a few drawbacks that make this 
approach insufficient for our purposes. Although it is 
usually good to have precise knowledge and control over 
state transitions, in the case of narrative generation, too 
much control is potentially detrimental to the quality of the 
story and the experience of writing it. Often it is precisely 
the unexpected outcomes that engage us in a story that 
would otherwise be the same boring sequence of events 
that have been rehashed a thousand times before. While not 
unworkable in a formal representation, it is also not 
obvious how to solve the problem effectively or efficiently. 
The other, more serious issue is a matter of scale. Although 
impressive in its breadth and depth, Mueller’s 
formalization of the restaurant domain supports only one of 
an intractable number of activities one could tell a story 
about. Even if we limit ourselves to only the most frequent 
activities, the number of existing formal theories is 
unsuitably small. Unfortunately, even with significant 
effort, it is extremely unlikely that sufficient domain 
theories could be authored to cover the possible range of 
activity contexts needed to enable open-domain 
storytelling. 
 Instead, we opted to use a large collection of 
unstructured data. While it is difficult and time consuming 
to write formal theories of commonsense and mundane 
activities, there is virtually no limit to the amount of data 
written about these topics on the web in natural language. 
Our database is derived from a large collection of stories 
harvested from Internet weblogs by Gordon, Cao and 
Swanson (2007). This corpus consists of 3.7 million 

 
Figure 1: Illustration of the story generation architecture. 



segments of weblog text (66.5 million sentences), 
classified as story-like text using statistical text 
classification techniques. 
 Using this story collection for narrative generation might 
seem, at first, problematic for two related reasons. Because 
our database is unstructured, it is probably difficult for the 
computer to have any deep understanding of the stories 
without applying advanced natural language processing 
techniques. Without this understanding it seems impossible 
to ensure that similar cases can be found, or to guarantee 
that what happens next in these similar cases will be 
coherent in the context of the user’s developing narrative. 
Compounding the problem is that, due to the scale of our 
corpus, sophisticated NLP techniques for extracting rich 
structure would require an intractable amount of 
computational resources. While it would be important to 
have enough structure for some level of deep 
understanding, it is our position simple text based 
information retrieval techniques will more easily enable 
open-domain narrative constructions due to the scale that 
can be achieved. 

Retrieve 
In order to make use of our story corpus, it is necessary to 
have a mechanism for sentence-level retrieval. In this 
work, we use the Apache Lucene system (Gospodnetic and 
Hatcher 2004), a high-performance information retrieval 
toolkit. Lucene can create positional indexes allowing for 
fast searches of Boolean, phrase and other query types on a 
corpus. Lucene also provides a default document ranking 
function based on a slightly modified version of the 
popular term frequency-inverse document formula (TF-
IDF), which will be described shortly. These features give 
us the required means for locating similar stories by 
comparing story sentences, and then selecting the next 
sentence in retrieved stories as the contribution to the 
user’s developing story. 
 Lucene creates an index by scanning through every 
document in a corpus and collecting several key pieces of 
information about each unique token1. Each token stores 
the total number of documents that contain it. In addition, 
for each document the token is found, the unique document 
identifier is stored along with the frequency of occurrence 
and the location in the document where the token is found. 
This information can then be used to efficiently find all the 
documents containing a particular token, such as the token 
story. It can also be used for Boolean queries such as, find 
all documents with the tokens story AND narrative, by 
taking the intersection of the document sets returned. More 
importantly for our models is the ability to perform phrase 
queries such as, find all documents that contain the phrase 
narrative story, which can be done using constraints on the 
positional indexes of the two tokens. 

                                                
1 A token in our application is any sequence of characters 
separated by whitespace after the OpenNLP tokenizer has 
been applied. 

 A notion of similarity is also paramount to the meaning 
of our models. Given a set of documents, obtained using 
the positional index and a set of query terms, Lucene ranks 
them using a vector space model and a TF-IDF weighting 
system. The specific scoring function is: 

 
The key components of this equation are the tf, idf and 
queryBoost terms. tf is the term frequency contribution and 
is defined as termFrequency1/2. The more times a term 
appears in the document the more it contributes to the 
score. idf is the inverse-document frequency and is defined 
by: 

 
The weight of term is diminished by an increase in the 
number of documents that contain the term. queryBoost is 
a function that allows you to modify the base weight of the 
term by a proportional amount. By default this value is 1 
and does not affect the overall score of the query. The 
other terms of the scoring function are for various 
normalization factors. 
 Lucene also offers one other feature that we take 
advantage of in our models. Lucene is able to index 
documents in a semi-structured way. For example, a single 
document can contain several, distinct searchable fields. A 
description of how we utilize this functionality will be 
introduced later in the paper. 

Analyze 
The analysis phase in our approach is basically a 
preprocessing step that modifies input text to be more 
effective at finding similar stories. For example, consider a 
story that begins “Lee knocked on apartment number 
534.” If we were to search for sentences like this one, 
using each word as a query term and Lucene’s default 
scoring mechanism, we would likely receive unsatisfactory 
results. Recall that TF-IDF gives more weight to terms that 
appear frequently in a document and reduces the score for 
terms that appear in many documents. The mechanism has 
no way of knowing that knocking or being at an apartment 
is the semantically important search criteria. In many cases 
these terms will in fact contribute the most to the overall 
score, however this example highlights two common 
problems with this approach. Many proper names and 
numbers that our users include in their stories are common 
enough to appear in the database but are uncommon 
enough that they dominate the TF-IDF scoring function. 
 To minimize some of these undesired effects we apply 
the following procedures. First we strip all non ASCII 
characters. We then apply the Stanford Named Entity 
Recognizer (Finkel, Grenager and Manning 2005), which 
we use to replace all matching spans of words with a 
special token representing either a Person, Organization, 



or Location. In addition to replacing these entities we also 
tokenize the input using the OpenNLP toolkit (Baldridge 
and Morton 2008), lowercase all the text and replace any 
sequence of numbers with a special token. In order for this 
preprocessing to work properly, both the text being 
indexed (the database) as well as the query text (the user’s 
story) need to be preprocessed / analyzed in the same way. 
Note that these inputs are changed for the purpose of 
searching the index, but the actual data in the story 
collection and what will ultimately be returned to the user 
is unchanged by this process. 

Adapt 
Adaptation is the process of modifying what has been 
found in the database and adapting it to fit the user’s story 
more closely. These could be relatively simple things like 
replacing proper names to match characters of the user’s 
story, or changing the gender or number of the pronouns to 
reflect the proper relationships in the text. Unfortunately, at 
this stage of development only a trivial amount of 
adaptation is applied. 
 Our approach relies on a sentence detection algorithm, 
also from the OpenNLP toolkit (Baldridge and Morton 
2008), however because weblog text is significantly 
different than the trained model, more errors than expected 
still occur. Often sentence fragments are returned that 
begin in the middle of a sentence or that have trailing 
garbage after the final punctuation mark. We address these 
issues by always capitalizing the first character of a 
returned sentence and by applying a simple heuristic to 
remove excess trailing characters. 

Retrieval Models 
Although the architecture is relatively simple and 
straightforward, several decisions had to be made to build a 
completely functional system. Primarily these decisions are 
related to how similarity is defined between story 
sentences and how this is used to retrieve these sentences 
from the corpus. As mentioned previously, we use Lucene 
as the primary basis for answering these questions. Lucene 
is a powerful toolkit that allows for many query types and 
optimizations. This leads to a question of what are the best 
options for finding relevant story sentences, in the 
database, that will produce the most coherent and 
entertaining narratives. Swanson and Gordon (2008) 
showed that with a simple bag-of-words query, that only 
searches the user’s current sentence, can perform with 
unexpectedly high levels of performance. Although this 
work showed the viability for such a simple approach, no 
baselines or comparisons were made. In this section we 
will discuss five models we believe to be good candidates 
for search and retrieval of relevant story sentences. 

Simple Model 
The first model is closely related to the original model 
proposed in Swanson and Gordon (2008), only differing in 

the pre and post-processing steps. In this model each 
sentence in the story collection is treated as an individual 
entity to be searched (a field). Additionally a pointer to the 
next sentence is stored along with this entry in the index. In 
this model the last sentence of a story does not have a 
searchable field nor does it have a pointer. Queries are 
constructed using a bag-of-words approach consisting of 
the words from the user’s most recent input sentence only. 
For all the models, except the baseline, the top ranked 
sentence returned by the query is displayed to the user as 
mentioned in the user interface section. The other nine 
alternatives are populated using the next most similar 
sentences. See Figure 2a for a representation of how the 
Lucene index was created corresponding to this model. 

Simple Bigram Model 
The second model is nearly identical to the simple model. 
The one difference is that we also include bigram phrase 
queries, along with the simple bag-of-words, in the 
searching phase. 

Context Model 
One of the problems discovered in Swanson and Gordon 
(2008) was the system had no memory. Even when a 
remarkably similar sentence to the current input was found 
in the database, often the returned sentence did not make 
sense with the story as a whole. For example, in just a few 
turns a story about skiing in Colorado could slip into a day 
at the beach in Miami. Although the issues involved in 
tackling this problem broadly are numerous and complex, 
one solution is to give the system a memory of what has 
already happened in the emerging story. This can provide a 
context for the selection of the next event and potentially 
prevent certain types of incoherencies. 
 We give our system memory by adding an additional 
field to our index. When creating our index we crawl 
through each story one sentence at a time. As usual, we 
create a document for each sentence that has a field for the 
current sentence. However, we also create a field, except 
for the first sentence of a story, consisting of the n 
sentences prior to the current sentence (in our case n = 12).  
Now when searching we still query the original field with 
the user’s current sentence but we also query the new field 
with the user’s entire story up to the current input.  
 Despite Lucene’s built in normalization procedures that 
deal with document and query length, a preliminary 
investigation showed that the context field was still too 
dominant in the overall score. We attempted to overcome 
this problem by overriding the queryBoost mechanism in 
the scoring algorithm. Each term in the context query was 
given a boosted score of 2-x/3, where x is the number of 
sentences prior to the current input. This gives less and less 
weight to terms that appear farther from what is happening 
in the story now. We have no particular justification for 
using this function, other than it appeared to do better in 
our preliminary investigation. A more optimal approach for 
term weighting will be subject of further research. See 



Figure 2b for a representation of how the Lucene index 
was created corresponding to this model. 

Context Bigram Model 
Like the simple bigram model the fourth model uses the 
same structure as the context model but incorporates 
bigram phrase queries while searching both the simple and 
context fields. 

Random Generation 
Although Swanson and Gordon (2008) showed that users 
generally enjoyed using this type of collaborative writing 
system and coherent stories could be authored, there was 
no basis for comparison. The fifth model serves as a 
baseline by simply returning a random sentence from the 
database regardless of the user’s input. 

Examples 
In this section we examine three of highly rated stories 
generated using different models (Figure 3), and highlight 
some of the qualitative differences between them. Each 
story is presented in a table in which a row represents one 
turn of the system. In the first column is the sentence the 
user wrote (either the first sentence or in response to the 
computer generated sentence in the previous row). The 
second column contains the matching content in the 
database. For the simple (non-context) models this is 

simply the most similar sentence according the Lucene 
scoring function. For context models this column is split in 
two rows. The top row represents the most similar sentence 
(as in the simple model) and the bottom row represents the 
preceding n sentences of that story.  
 The first story, presented in Figure 3a, was generated 
using the random model. As expected, in each turn the 
returned sentence has virtually no overlapping lexical 
items with the user’s sentence. Surprisingly there is an 
uncanny, coincidental overlap in semantic relatedness of 
buildings, bodies, etherealness and mortality. Immediately 
the computer returns somewhat of a non-sequitur (i.e. how 
do you look out your window if you are outside the 
building?). Despite this initial problem the user is able to 
successfully turn the story around and write something 
other users believe to be coherent and entertaining. This 
example also brings up two other points. Although the 
story gets a pretty good rating, it is quite short with the 
user uninspired to continue beyond 3½ turns. The second 
thing to note is that these random sentences are actually 
fairly generic. Although we have not studied this 
specifically, an informal investigation in the corpus seems 
to indicate a substantial number of the sentences are fairly 
content neutral, such as phrases like: “yeah”, “oh well”, 
“that’s too bad”, “I did it last week”, “I couldn’t believe 
it”. This suggests that a random baseline might not perform 
as poorly as one would expect. Additionally the random 
model also highlights, what could be considered either a 
merit or fault depending on your outlook that ultimately 
much of the quality of the story will be dependent on the 
creativity and effort exerted by the human user. 
 The second example, in Figure 3b is a story generated 
with the simple bigram model. Unlike the random model, 
there is considerable lexical overlap between the user’s 
sentence and what is found using the index. For many of 
the sentences this directly translated into sentences that 
produced coherent events and actions by the characters in 
the story. When the lexical overlap corresponds to the 
semantically relevant parts of the story the computer 
generated following sentences can be quite convincing, 
however many times the overlap is on other less relevant 
aspects of the story. For example the user’s phrase, “But 
we settled for Corfu” shares many bigrams in common 
with, “But we settled for the simpler name”. The problem 
however is two-fold. Considering just the lexical aspect, 
despite the significant overlap, the key n-gram that does 
not align is, “settled for Corfu”. The more difficult issues 
moves beyond lexical relationships and gets at a much 
deeper problem, that the phrase “settled for Corfu” still 
does not actually solve the problem. There is nothing in the 
meaning of “settled for Corfu” that precludes a phrase such 
as “But we settled for the simpler name”. Corfu is indeed a 
name and with no other information it is still entirely 
reasonable to expect this sentence to be found again. This 
highlights a problem of basing the scoring algorithm on 
lexical frequencies alone and is a fundamental problem in 
achieving truly coherent and sophisticated stories. 

Story 1 
Document 1: It was the first time I sailed with Jon Smith. 

Simple Field: it was the first time i sailed with ${person} 
Pointer: Document 2 

Document 2: It was the worst trip ever! 
Simple Field: it was the worst trip ever ! 
Pointer: Document 3 

Document 3: I was seasick the whole time. 
Simple Field: i was seasick the whole time . 
Pointer: Document 4 

Document 4: I’ll never do that again. 
… 

a)  

Story 1 
Document 1: It was the first time I sailed with Jon Smith. 

Simple Field: it was the first time i sailed with ${person} . 
Pointer: Document 2 

Document 2: It was the worst trip ever! 
Simple Field: it was the worst trip ever ! 
Context Field: it was the first time i sailed with ${person} . 
Pointer: Document 3 

Document 3: I was seasick the whole time. 
Simple Field: i was seasick the whole time . 
Context Field: it was the first time i sailed with ${person} . it 
was the worst trip ever ! 
Pointer: Document 4 

Document 4: I’ll never do that again. 
… 

b) 

Figure 2: a) Illustration of how the index is built for the 
simple models. b) Illustration of how the index is built for the 
context models.  



 

a) Bungie jumping off a building 

User written sentence Matching sentence Computer generated sentence 
I had never jumped off a building before, until last weekend.  As I was doing that, I suddenly looked out my window. 
It was an out of body experience as I watched myself fall.  Oh well. 
I thought hoping, no praying, that the harness was tight and the 
bungie cord was safe. 

 I was not afraid to leave my earthly body. 

Well of course I was a little scared, but if I was not prepared to 
go all the way I would have never made the first step. 

  

 
b) Escaping to the island of Corfu 

User written sentence Matching sentence Computer generated sentence 
It all started easy enough. It all started out normal enough. Got up, had lunch, got ready went to work etc. 
But then I noticed something very strange. Then, as I flipped through the test, I 

realized something very strange. 
Mr. Sipiera gave me points on the blank page. 

Why would he do that? What was he up to? Why would he do that? Because he was planning to kill Sonya for her 
knowledge of the kidnapping plot. 

I decided to get to Sonya first and run away with her 
to a Greek island. 

We left pretty much after this and took 
a ferry back to Hong Kong island. 

Our original plan to go to Lamma island was ditched, 
as we had inadvertently spent half the day on Lantau 
island. 

But we settled for Corfu, which has a beautiful little 
hotel on the edge of the old town. 

But we settled for the simpler name. We had dogs (and cats) when I was growing up but 
my wife and sons have never had a dog before. 

Corfu was full of cats and dogs, and I ended up 
having to look at my feet a lot when walking around 
town. 

and i ended up having to save the day. It's too long to list the details of the whole operation. 

Sonya would take on the secret identity of a scuba 
instructor, and I'd be a fisherman. 

"Before I even got so far as having a 
proper breakdown in realizing that 
fantasy is not reality, I found that I 
had the secret identity of a beetle." 

"But that could have been very useful, right? 

It meant we could spend a lot of secret time together 
on the jetty beyond the coastline. 

She does spend a lot of time at the bar 
where they all hang out. 

She has told me some of the men she hangs with have 
come on to her. 

I told her I'd kill them just like that old math teacher. I told her I'd come help her clean and 
whatever else she needs. 

Once she's gone, I'm pretty much on my own. 

Fishing all day, looking out for the police. This is bad for the police. If they stopped to survey the situation they could only 
see what was there -- none of the men were armed. 

It was a great secret life.   
 

c) Thunder storm 

User written sentence Matching sentence Computer generated sentence 
Thank God we didn't miss the fireworks! Thank god we put up our lightening 

rod last weekend!  
We were near at the Main Building 
when we already heard explosions in 
the air. 

Now, being a friendly bunch and people accepting that this was the 
norm for their works matches, it took us by surprise really. 

The largest thuderstorm in 50 years 
took us by surprise. 

We met up with fellow GOT anglers Phil Young (Madd) and Gary 
Thorpe, the current 5hour record holder. Slowly everyone arrived 
and although a hard frost had fallen over the previous two night's 
hopes were still high of a good weight and match. Now after paying 
our monies to Dave and drawing our pegs should have really told us 
what sort of day we were to expect.  

We all switched to accomodate the 
extra pegging and with Gary on what 
looked like a flyer of a peg in front of 
him, he dug in his heels and said he 
was not moving. 

Don't blame him. I couldn't blame him, it looked like 
everything not nailed down was going 
to get blown away. 

They brought back Bebes and he wants to head back to the ranch 
now. Can't say I blame him. He's no spring chicken anymore." "No 
coach, they hired Shula." "Shula, well, I'll be," Bryant said. "I never 
liked him, but he did win a few Super Bowls. So what happened, the 
old Mount Rushmore face finally hang it up. 

He must be pushing 75. 

Foolish is an understatement. Let's just say calling him stubborn is 
an understatement. I don't need an apology, not any more. Back then -- I might have 

liked one back then. I was angry for a long time -- at you, at my 
father, at the system. At me, for being such a fool. Don't say that -- 
you were never a fool. let a convict talk me into leaving a secured 
door unlocked, knowing that he was going to escape through it -- 
that's about as foolish as it gets.  

But it's done now. 

The storm passed and luckily we 
weren't all washed away. 

  

Figure 3: a) A story generated with the random model (4.29 coherence, 3.71 overall, 7 raters) b) A story generated with the simple 
bigram lucene model (4.22 coherence, 4.44 overall, 9 raters). c) A story generated with the context bigram lucene model (3.0 
coherence, 2.6 overall, 5 raters). 



 The third example, in Figure 3c, is a story generated 
using the context bigram model. This example basically 
shows the same benefits and drawbacks as the simple 
bigram model. Despite including the history of the user’s 
story as additional information during the search, it seems 
the simple field contributes the most dominant weight to 
the result. It is not entirely clear why this is the case, but at 
least some of the problem is related to the ad hoc term 
boosting used to reduce the weight of terms in the history. 

Evaluation 
The examples presented in the previous section provide 
some qualitative insight into how the different models 
behave and what kinds of stories are produced with the 
system. To make a qualitative comparison we designed a 
set of experiments that try to assess several different areas 
of performance. The design of the experiments was similar 
to those performed in Swanson and Gordon (2008) with a 
few notable exceptions. When a user began writing a story, 
one of the five retrieval models was chosen randomly and 
used for the entire story. When the user was finished with 
their story they were asked to rate it on the following two 
criteria using a five-point scale (1 low, 5 high):  

Coherence: How much sense can you make out of the 
story? Do individual sentences follow from each other 

and does the story make sense as a whole. 

Overall: What do you think of the story overall? Did 
you have fun reading or writing it? Was there 
anything particularly interesting about it? 

Participants in this study consisted of 22 students and staff 
working at the University of Southern California’s Institute 
for Creative Technologies, recruited by email to use the 
system over a period of 13 days. Using our web-based 
interfaces, these users authored a total of 101 stories using 
a randomly-selected retrieval model, and provided 
coherence and overall ratings for 96 stories written by 
other users. In all cases, the authors of these stories 
remained anonymous to the users who rated them. The 
results are summarized in figures 4 and 5. 
 Although, as previously mentioned, much of the success 
of a story is determined by the creativity of the author, 
these results show that there are noticeable differences 
between the models. In general, the random model 
performs the worst on nearly all criteria, while the simple 
bigram model performs among the best. One of the more 
interesting results, however, is that despite the context 
models being outperformed on coherence (and overall) 
ratings by the simple bigram model, the authors deemed 
the choices returned by the system among the best. 
Another important measure of success for our system is the 
length of the story, which can loosely indicate the ease and 

 

 
Figure 4: Charts comparing the coherence and overall performance of the (R)andom, (S)imple, (SB)Simple Bigram, (C)ontext and 
(CB)Context Bigram models with error bars representing 95% confidence. The ratings are compared across ratings from the authors 
only (Author), the users excluding the author (User) and from everyone (Everyone). 
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Model Coherence Overall Combined Avg. Choice Avg. Story Length 
Random 2.93 ± 0.28 2.66 ± 0.24 2.79 ± 0.18 3.61 ± 0.58 10.43 ± 2.48 
Simple 3.04 ± 0.28 3.16 ± 0.29 3.10 ± 0.22 3.00 ± 0.63 11.06 ± 1.85 
Simple Bigram 3.66 ± 0.23 3.42 ± 0.30 3.54 ± 0.23 2.55 ± 0.53 14.39 ± 3.46 
Context 3.05 ± 0.33 3.13 ± 0.35 3.09 ± 0.28 2.98 ± 0.41 11.89 ± 2.57 
Context Bigram 3.08 ± 0.27 2.87 ± 0.27 2.98 ± 0.23 2.68 ± 0.56 10.87 ± 2.78 
Figure 5: A comparison of several metrics across the models with 95% confidence intervals. Coherence and Overall are averaged 
over all the ratings submitted by the users (including the authors). Combined is the average of all the Coherence and Overall ratings. 
Avg. Choice is the average rank of the replacement when the user changes the default selection (given a value of zero). Avg. Story 
Length is the average number of total sentences written by both human and computer. 



enjoyment users have in writing their stories. Again the 
random model performs the worst and the simple bigram 
model performs the best. The role of context is less clear as 
the simple context model produces the second longest 
stories on average while the bigram context model is not 
much better than the random model. 

Discussion 
Our results show that there are clear differences between 
the models, however the conclusions that can be drawn are 
not as decisive. We believed that including context into the 
search criteria would have improved the quality of the 
retrieved sentences regardless of our implementation 
decisions. Unfortunately, the choice to use context is not as 
simple as a binary decision to include or not include it. It 
seems it is critically important how much context is 
included in the search and the weight given to the terms 
based on factors such as their location. The ability for 
returned sentences to adhere to the people, states and 
actions that have already been mentioned in the story is 
vital to the success of our system. Although our 
methodology for including context in the retrieval process 
was not successful we believe that it is still an important 
avenue to pursue. However, it is also equally important to 
investigate more advanced adaptation procedures that 
could also help modify an initially problematic sentence 
into one that fits with the given narrative constraints. 
 Although our system relies heavily on information 
retrieval techniques, this work indirectly indicates that 
simply adopting the best performing techniques from the 
IR community may not yield the best results for narrative 
story generation. Even if we had access to a retrieval 
system that could find the most semantically similar 
sentence in the corpus (or a much larger one) there are still 
several issues that limit the value of these selections in this 
domain. First, without any adaptation, these sentences (and 
the ones that follow them) may be appropriately about 
people doing and saying the right things, but many times 
they would likely still fail on grammatical issues such as 
agreement. Also, no matter how large the corpus, names, 
dates, locations and auxiliary entities are likely to play an 
even more important role than they would in traditional IR 
system. However, the more relevant problem to narrative 
generation is that a good story usually contains events that 
follow a narrative progression, where events are chosen in 
support of a developing plotline with an appropriate 
amount of explication and twists. An ideal system should 
not always blindly retrieve the most similar sentence from 
the database, and further research is needed to determine 
how to do this effectively. 
 From a high-level view, our approach can be 
characterized as a type of case-based reasoning system, 
where new problems are solved by retrieving previously 
solved problems and then adapting them to the current 
situation (Riesbeck & Schank, 1989). While our approach 
takes some inspiration from case-based reasoning, there are 
still several aspects of our system that could benefit from 

other core ideas of the case-based reasoning approach. For 
example, we mentioned the importance of adaptation in 
returning coherent sentences, but our system still lacks a 
effective mechanism of transforming a weblog sentence 
into one that seamlessly integrates into the user’s story. 
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