
A Comparison of Retrieval Models for Open Domain Story Generation

Reid Swanson and Andrew S. Gordon

Institute for Creative Technologies
University of Southern California

13274 Fiji Way, Marina del Rey, CA 90292 USA
swansonr@ict.usc.edu, gordon@ict.usc.edu

Abstract
In this paper we describe the architecture of an interactive
story generation system where a human and computer each
take turns writing sentences of an emerging narrative. Each
turn begins with the user adding a sentence to the story,
where the computer responds with a sentence of its own that
continues what has been written so far. Rather than
generating the next sentence from scratch, the computer
selects the next sentence from a corpus of tens of millions of
narrative sentences extracted from Internet weblogs. We
compare five different retrieval methods for selecting the
most appropriate sentence, and present the results of a user
study to determine which of these models produces stories
with the highest coherence and overall value.

Introduction
The automated generation of fictional stories has proven to
be an extremely challenging problem in Artificial
Intelligence. Recent work in this area has produced
impressive results in narrow domains (Riedl and Leon
2008; Cheong and Young 2006; Riedl and Young 2004),
but has been limited by the availability of knowledge
resources that support open-domain reasoning about
events, as well as the difficulties in generating fluid natural
language from these formalisms. Previously, we introduced
a new approach to story generation that attempts to address
these limitations by casting the problem as a massive-scale
collaborative writing project (Swanson and Gordon 2008).
In this approach, a user and a computer collaboratively
author new stories in an interactive fashion, where each
repeatedly takes turns contributing new sentences to an
unfolding narrative. Whereas sentences contributed by the
human user are limited only by their creativity, the
sentences provided by the computer are selected from tens
of millions of narrative sentences automatically extracted
from Internet weblogs. Despite the simplicity of this
approach and the lack of restrictions on the narrative
domain, the stories that can be generated are often both
coherent and entertaining, as in the following example:

I came home from work and my neighbor had cut
down all of the trees in my yard. The magnificent

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

huge fir tree in the backyard hit the neighbor's roof. I
guess that made him mad enough to cut down all my
trees when I was gone at work. I was relieved to find
that he had only just left and was still in sight. I
picked up a shovel and crept up behind him. He
reached for the door handle and began to turn it
slowly before wrenching the door open. I used all my
strength and wacked him on the head with the shovel.
It was covered in blood and maggots. Someone had
used the same shovel earlier to bury their dog who
was hit by a car. The wife says I have a bad attitude.
Let's see how she feels when some cuts down all the
trees in her yard.

The original system (Say Anything) described by Swanson
and Gordon (2008) employed an extraordinarily simple
strategy for selecting an appropriate sentence to contribute
during the computer’s turn. Although these early results
were promising, this work highlighted a number of
problems that limited the coherence and quality of the
stories. To tackle these problems, we developed a new
version of the Say Anything system that would allow us to
investigate issues of coherence and quality by evaluating
the performance of five competing retrieval models.
 This paper describes our revision of the Say Anything
story generation system and presents the results of our
evaluation of competing retrieval models. We begin by
describing the new system architecture and user interface,
followed by a description of the five competing retrieval
models of our evaluation. We then present our evaluation
of these models, first through a qualitative analysis of
several example stories produced by different models, and
second through a quantitative analysis of user judgments
and authoring behavior.

Architecture
The Say Anything architecture follows a simple approach,
illustrated in figure 1. It is a cyclical process involving a
human and computer contributing alternating sentences to
a narrative story. Each turn begins with a human user
writing a sentence and is completed by the computer
returning a sentence in response. The computer performs
three major operations in an attempt to generate a sentence
that is cohesive with what has been written so far. First, it

analyzes the story, including the user’s current input. This
analysis is used to retrieve a sentence from a large story
database. A story in the database is selected based on a
measure of similarity to the user’s current input. The
retrieved story is treated as an approximation of the current
state in the user’s story. The next sentence of this story is
then chosen as the continuation of the user’s developing
narrative. To better integrate this sentence into the user’s
story, a post-processing adaptation step is performed. In
this section we discuss the user interface to our system and
the main components of the generation process in more
detail.

User Interface
To facilitate the authoring of stories, we designed a web-
based interface to the Say Anything system. The main
screen of this user interface provides a workspace for
collaboratively authoring a new story, where the user’s
burgeoning story is presented near the top of the page. A
text box for typing the next sentence of the story, along
with controls allowing the user to continue or finish the
story, is positioned below this text box. After entering a
new sentence, it is appended to the bottom of the story,
followed by a sentence selected by the computer to move
the story forward. At any time during this process, the user
may click on a computer-generated sentence, revealing a
pop-up menu that presents nine other alternate sentences
that the user can choose from instead. We believed this
functionality would give users more opportunity to
continue their story in case a highly irrelevant or
objectionable sentence was initially returned. It also
allowed us to conduct a more fine-grained analysis of
coherence without having to bother the user with
judgments after every sentence. Finally, once the user
chooses to end their story, they are asked to give it a title
and rate it on two criteria, which are described in the
evaluation section of this paper.
 Although story generation is the primary focus of our
system, we also included several other elements in our

interface that we believed would improve our research and
make the system more enjoyable for the user. Not only did
we want to collect ratings from the author of a particular
story, but we also wanted feedback from users of our
system who did not write the story. To accomplish this we
created a separate page where users could read and rate
stories written by other users. Finally, to help encourage
our users to participate with the system we included two
additional pages; one in which they could read the top
ranked stories and another in which they could view all of
their previously written compositions.

Story Database
There are two general options in the design of a story
database. On one hand we could randomly sample a set of
real world stories and construct a relatively small but
highly structured formal model from an analysis of these
stories. On the other hand we could maintain a relatively
large unstructured database by leaving the stories relatively
intact. A small highly structured library enables a more
fine-grained control over how the system interprets and
responds to the input. For example, formal representation
of events and predicates in the domain would allow for
deep interpretation and well defined rules for progressing
to allowable states in the narrative development. For
example, Mueller (2006) proposes such a knowledge-base
in the domain of restaurant activities.
 Despite the potential benefits of a small set of structured
representations, there are a few drawbacks that make this
approach insufficient for our purposes. Although it is
usually good to have precise knowledge and control over
state transitions, in the case of narrative generation, too
much control is potentially detrimental to the quality of the
story and the experience of writing it. Often it is precisely
the unexpected outcomes that engage us in a story that
would otherwise be the same boring sequence of events
that have been rehashed a thousand times before. While not
unworkable in a formal representation, it is also not
obvious how to solve the problem effectively or efficiently.
The other, more serious issue is a matter of scale. Although
impressive in its breadth and depth, Mueller’s
formalization of the restaurant domain supports only one of
an intractable number of activities one could tell a story
about. Even if we limit ourselves to only the most frequent
activities, the number of existing formal theories is
unsuitably small. Unfortunately, even with significant
effort, it is extremely unlikely that sufficient domain
theories could be authored to cover the possible range of
activity contexts needed to enable open-domain
storytelling.
 Instead, we opted to use a large collection of
unstructured data. While it is difficult and time consuming
to write formal theories of commonsense and mundane
activities, there is virtually no limit to the amount of data
written about these topics on the web in natural language.
Our database is derived from a large collection of stories
harvested from Internet weblogs by Gordon, Cao and
Swanson (2007). This corpus consists of 3.7 million

Figure 1: Illustration of the story generation architecture.

segments of weblog text (66.5 million sentences),
classified as story-like text using statistical text
classification techniques.
 Using this story collection for narrative generation might
seem, at first, problematic for two related reasons. Because
our database is unstructured, it is probably difficult for the
computer to have any deep understanding of the stories
without applying advanced natural language processing
techniques. Without this understanding it seems impossible
to ensure that similar cases can be found, or to guarantee
that what happens next in these similar cases will be
coherent in the context of the user’s developing narrative.
Compounding the problem is that, due to the scale of our
corpus, sophisticated NLP techniques for extracting rich
structure would require an intractable amount of
computational resources. While it would be important to
have enough structure for some level of deep
understanding, it is our position simple text based
information retrieval techniques will more easily enable
open-domain narrative constructions due to the scale that
can be achieved.

Retrieve
In order to make use of our story corpus, it is necessary to
have a mechanism for sentence-level retrieval. In this
work, we use the Apache Lucene system (Gospodnetic and
Hatcher 2004), a high-performance information retrieval
toolkit. Lucene can create positional indexes allowing for
fast searches of Boolean, phrase and other query types on a
corpus. Lucene also provides a default document ranking
function based on a slightly modified version of the
popular term frequency-inverse document formula (TF-
IDF), which will be described shortly. These features give
us the required means for locating similar stories by
comparing story sentences, and then selecting the next
sentence in retrieved stories as the contribution to the
user’s developing story.
 Lucene creates an index by scanning through every
document in a corpus and collecting several key pieces of
information about each unique token1. Each token stores
the total number of documents that contain it. In addition,
for each document the token is found, the unique document
identifier is stored along with the frequency of occurrence
and the location in the document where the token is found.
This information can then be used to efficiently find all the
documents containing a particular token, such as the token
story. It can also be used for Boolean queries such as, find
all documents with the tokens story AND narrative, by
taking the intersection of the document sets returned. More
importantly for our models is the ability to perform phrase
queries such as, find all documents that contain the phrase
narrative story, which can be done using constraints on the
positional indexes of the two tokens.

1 A token in our application is any sequence of characters
separated by whitespace after the OpenNLP tokenizer has
been applied.

 A notion of similarity is also paramount to the meaning
of our models. Given a set of documents, obtained using
the positional index and a set of query terms, Lucene ranks
them using a vector space model and a TF-IDF weighting
system. The specific scoring function is:

The key components of this equation are the tf, idf and
queryBoost terms. tf is the term frequency contribution and
is defined as termFrequency1/2. The more times a term
appears in the document the more it contributes to the
score. idf is the inverse-document frequency and is defined
by:

The weight of term is diminished by an increase in the
number of documents that contain the term. queryBoost is
a function that allows you to modify the base weight of the
term by a proportional amount. By default this value is 1
and does not affect the overall score of the query. The
other terms of the scoring function are for various
normalization factors.
 Lucene also offers one other feature that we take
advantage of in our models. Lucene is able to index
documents in a semi-structured way. For example, a single
document can contain several, distinct searchable fields. A
description of how we utilize this functionality will be
introduced later in the paper.

Analyze
The analysis phase in our approach is basically a
preprocessing step that modifies input text to be more
effective at finding similar stories. For example, consider a
story that begins “Lee knocked on apartment number
534.” If we were to search for sentences like this one,
using each word as a query term and Lucene’s default
scoring mechanism, we would likely receive unsatisfactory
results. Recall that TF-IDF gives more weight to terms that
appear frequently in a document and reduces the score for
terms that appear in many documents. The mechanism has
no way of knowing that knocking or being at an apartment
is the semantically important search criteria. In many cases
these terms will in fact contribute the most to the overall
score, however this example highlights two common
problems with this approach. Many proper names and
numbers that our users include in their stories are common
enough to appear in the database but are uncommon
enough that they dominate the TF-IDF scoring function.
 To minimize some of these undesired effects we apply
the following procedures. First we strip all non ASCII
characters. We then apply the Stanford Named Entity
Recognizer (Finkel, Grenager and Manning 2005), which
we use to replace all matching spans of words with a
special token representing either a Person, Organization,

or Location. In addition to replacing these entities we also
tokenize the input using the OpenNLP toolkit (Baldridge
and Morton 2008), lowercase all the text and replace any
sequence of numbers with a special token. In order for this
preprocessing to work properly, both the text being
indexed (the database) as well as the query text (the user’s
story) need to be preprocessed / analyzed in the same way.
Note that these inputs are changed for the purpose of
searching the index, but the actual data in the story
collection and what will ultimately be returned to the user
is unchanged by this process.

Adapt
Adaptation is the process of modifying what has been
found in the database and adapting it to fit the user’s story
more closely. These could be relatively simple things like
replacing proper names to match characters of the user’s
story, or changing the gender or number of the pronouns to
reflect the proper relationships in the text. Unfortunately, at
this stage of development only a trivial amount of
adaptation is applied.
 Our approach relies on a sentence detection algorithm,
also from the OpenNLP toolkit (Baldridge and Morton
2008), however because weblog text is significantly
different than the trained model, more errors than expected
still occur. Often sentence fragments are returned that
begin in the middle of a sentence or that have trailing
garbage after the final punctuation mark. We address these
issues by always capitalizing the first character of a
returned sentence and by applying a simple heuristic to
remove excess trailing characters.

Retrieval Models
Although the architecture is relatively simple and
straightforward, several decisions had to be made to build a
completely functional system. Primarily these decisions are
related to how similarity is defined between story
sentences and how this is used to retrieve these sentences
from the corpus. As mentioned previously, we use Lucene
as the primary basis for answering these questions. Lucene
is a powerful toolkit that allows for many query types and
optimizations. This leads to a question of what are the best
options for finding relevant story sentences, in the
database, that will produce the most coherent and
entertaining narratives. Swanson and Gordon (2008)
showed that with a simple bag-of-words query, that only
searches the user’s current sentence, can perform with
unexpectedly high levels of performance. Although this
work showed the viability for such a simple approach, no
baselines or comparisons were made. In this section we
will discuss five models we believe to be good candidates
for search and retrieval of relevant story sentences.

Simple Model
The first model is closely related to the original model
proposed in Swanson and Gordon (2008), only differing in

the pre and post-processing steps. In this model each
sentence in the story collection is treated as an individual
entity to be searched (a field). Additionally a pointer to the
next sentence is stored along with this entry in the index. In
this model the last sentence of a story does not have a
searchable field nor does it have a pointer. Queries are
constructed using a bag-of-words approach consisting of
the words from the user’s most recent input sentence only.
For all the models, except the baseline, the top ranked
sentence returned by the query is displayed to the user as
mentioned in the user interface section. The other nine
alternatives are populated using the next most similar
sentences. See Figure 2a for a representation of how the
Lucene index was created corresponding to this model.

Simple Bigram Model
The second model is nearly identical to the simple model.
The one difference is that we also include bigram phrase
queries, along with the simple bag-of-words, in the
searching phase.

Context Model
One of the problems discovered in Swanson and Gordon
(2008) was the system had no memory. Even when a
remarkably similar sentence to the current input was found
in the database, often the returned sentence did not make
sense with the story as a whole. For example, in just a few
turns a story about skiing in Colorado could slip into a day
at the beach in Miami. Although the issues involved in
tackling this problem broadly are numerous and complex,
one solution is to give the system a memory of what has
already happened in the emerging story. This can provide a
context for the selection of the next event and potentially
prevent certain types of incoherencies.
 We give our system memory by adding an additional
field to our index. When creating our index we crawl
through each story one sentence at a time. As usual, we
create a document for each sentence that has a field for the
current sentence. However, we also create a field, except
for the first sentence of a story, consisting of the n
sentences prior to the current sentence (in our case n = 12).
Now when searching we still query the original field with
the user’s current sentence but we also query the new field
with the user’s entire story up to the current input.
 Despite Lucene’s built in normalization procedures that
deal with document and query length, a preliminary
investigation showed that the context field was still too
dominant in the overall score. We attempted to overcome
this problem by overriding the queryBoost mechanism in
the scoring algorithm. Each term in the context query was
given a boosted score of 2-x/3, where x is the number of
sentences prior to the current input. This gives less and less
weight to terms that appear farther from what is happening
in the story now. We have no particular justification for
using this function, other than it appeared to do better in
our preliminary investigation. A more optimal approach for
term weighting will be subject of further research. See

Figure 2b for a representation of how the Lucene index
was created corresponding to this model.

Context Bigram Model
Like the simple bigram model the fourth model uses the
same structure as the context model but incorporates
bigram phrase queries while searching both the simple and
context fields.

Random Generation
Although Swanson and Gordon (2008) showed that users
generally enjoyed using this type of collaborative writing
system and coherent stories could be authored, there was
no basis for comparison. The fifth model serves as a
baseline by simply returning a random sentence from the
database regardless of the user’s input.

Examples
In this section we examine three of highly rated stories
generated using different models (Figure 3), and highlight
some of the qualitative differences between them. Each
story is presented in a table in which a row represents one
turn of the system. In the first column is the sentence the
user wrote (either the first sentence or in response to the
computer generated sentence in the previous row). The
second column contains the matching content in the
database. For the simple (non-context) models this is

simply the most similar sentence according the Lucene
scoring function. For context models this column is split in
two rows. The top row represents the most similar sentence
(as in the simple model) and the bottom row represents the
preceding n sentences of that story.
 The first story, presented in Figure 3a, was generated
using the random model. As expected, in each turn the
returned sentence has virtually no overlapping lexical
items with the user’s sentence. Surprisingly there is an
uncanny, coincidental overlap in semantic relatedness of
buildings, bodies, etherealness and mortality. Immediately
the computer returns somewhat of a non-sequitur (i.e. how
do you look out your window if you are outside the
building?). Despite this initial problem the user is able to
successfully turn the story around and write something
other users believe to be coherent and entertaining. This
example also brings up two other points. Although the
story gets a pretty good rating, it is quite short with the
user uninspired to continue beyond 3½ turns. The second
thing to note is that these random sentences are actually
fairly generic. Although we have not studied this
specifically, an informal investigation in the corpus seems
to indicate a substantial number of the sentences are fairly
content neutral, such as phrases like: “yeah”, “oh well”,
“that’s too bad”, “I did it last week”, “I couldn’t believe
it”. This suggests that a random baseline might not perform
as poorly as one would expect. Additionally the random
model also highlights, what could be considered either a
merit or fault depending on your outlook that ultimately
much of the quality of the story will be dependent on the
creativity and effort exerted by the human user.
 The second example, in Figure 3b is a story generated
with the simple bigram model. Unlike the random model,
there is considerable lexical overlap between the user’s
sentence and what is found using the index. For many of
the sentences this directly translated into sentences that
produced coherent events and actions by the characters in
the story. When the lexical overlap corresponds to the
semantically relevant parts of the story the computer
generated following sentences can be quite convincing,
however many times the overlap is on other less relevant
aspects of the story. For example the user’s phrase, “But
we settled for Corfu” shares many bigrams in common
with, “But we settled for the simpler name”. The problem
however is two-fold. Considering just the lexical aspect,
despite the significant overlap, the key n-gram that does
not align is, “settled for Corfu”. The more difficult issues
moves beyond lexical relationships and gets at a much
deeper problem, that the phrase “settled for Corfu” still
does not actually solve the problem. There is nothing in the
meaning of “settled for Corfu” that precludes a phrase such
as “But we settled for the simpler name”. Corfu is indeed a
name and with no other information it is still entirely
reasonable to expect this sentence to be found again. This
highlights a problem of basing the scoring algorithm on
lexical frequencies alone and is a fundamental problem in
achieving truly coherent and sophisticated stories.

Story 1
Document 1: It was the first time I sailed with Jon Smith.

Simple Field: it was the first time i sailed with ${person}
Pointer: Document 2

Document 2: It was the worst trip ever!
Simple Field: it was the worst trip ever !
Pointer: Document 3

Document 3: I was seasick the whole time.
Simple Field: i was seasick the whole time .
Pointer: Document 4

Document 4: I’ll never do that again.
…

a)

Story 1
Document 1: It was the first time I sailed with Jon Smith.

Simple Field: it was the first time i sailed with ${person} .
Pointer: Document 2

Document 2: It was the worst trip ever!
Simple Field: it was the worst trip ever !
Context Field: it was the first time i sailed with ${person} .
Pointer: Document 3

Document 3: I was seasick the whole time.
Simple Field: i was seasick the whole time .
Context Field: it was the first time i sailed with ${person} . it
was the worst trip ever !
Pointer: Document 4

Document 4: I’ll never do that again.
…

b)

Figure 2: a) Illustration of how the index is built for the
simple models. b) Illustration of how the index is built for the
context models.

a) Bungie jumping off a building

User written sentence Matching sentence Computer generated sentence
I had never jumped off a building before, until last weekend. As I was doing that, I suddenly looked out my window.
It was an out of body experience as I watched myself fall. Oh well.
I thought hoping, no praying, that the harness was tight and the
bungie cord was safe.

 I was not afraid to leave my earthly body.

Well of course I was a little scared, but if I was not prepared to
go all the way I would have never made the first step.

b) Escaping to the island of Corfu

User written sentence Matching sentence Computer generated sentence
It all started easy enough. It all started out normal enough. Got up, had lunch, got ready went to work etc.
But then I noticed something very strange. Then, as I flipped through the test, I

realized something very strange.
Mr. Sipiera gave me points on the blank page.

Why would he do that? What was he up to? Why would he do that? Because he was planning to kill Sonya for her
knowledge of the kidnapping plot.

I decided to get to Sonya first and run away with her
to a Greek island.

We left pretty much after this and took
a ferry back to Hong Kong island.

Our original plan to go to Lamma island was ditched,
as we had inadvertently spent half the day on Lantau
island.

But we settled for Corfu, which has a beautiful little
hotel on the edge of the old town.

But we settled for the simpler name. We had dogs (and cats) when I was growing up but
my wife and sons have never had a dog before.

Corfu was full of cats and dogs, and I ended up
having to look at my feet a lot when walking around
town.

and i ended up having to save the day. It's too long to list the details of the whole operation.

Sonya would take on the secret identity of a scuba
instructor, and I'd be a fisherman.

"Before I even got so far as having a
proper breakdown in realizing that
fantasy is not reality, I found that I
had the secret identity of a beetle."

"But that could have been very useful, right?

It meant we could spend a lot of secret time together
on the jetty beyond the coastline.

She does spend a lot of time at the bar
where they all hang out.

She has told me some of the men she hangs with have
come on to her.

I told her I'd kill them just like that old math teacher. I told her I'd come help her clean and
whatever else she needs.

Once she's gone, I'm pretty much on my own.

Fishing all day, looking out for the police. This is bad for the police. If they stopped to survey the situation they could only
see what was there -- none of the men were armed.

It was a great secret life.

c) Thunder storm

User written sentence Matching sentence Computer generated sentence
Thank God we didn't miss the fireworks! Thank god we put up our lightening

rod last weekend!
We were near at the Main Building
when we already heard explosions in
the air.

Now, being a friendly bunch and people accepting that this was the
norm for their works matches, it took us by surprise really.

The largest thuderstorm in 50 years
took us by surprise.

We met up with fellow GOT anglers Phil Young (Madd) and Gary
Thorpe, the current 5hour record holder. Slowly everyone arrived
and although a hard frost had fallen over the previous two night's
hopes were still high of a good weight and match. Now after paying
our monies to Dave and drawing our pegs should have really told us
what sort of day we were to expect.

We all switched to accomodate the
extra pegging and with Gary on what
looked like a flyer of a peg in front of
him, he dug in his heels and said he
was not moving.

Don't blame him. I couldn't blame him, it looked like
everything not nailed down was going
to get blown away.

They brought back Bebes and he wants to head back to the ranch
now. Can't say I blame him. He's no spring chicken anymore." "No
coach, they hired Shula." "Shula, well, I'll be," Bryant said. "I never
liked him, but he did win a few Super Bowls. So what happened, the
old Mount Rushmore face finally hang it up.

He must be pushing 75.

Foolish is an understatement. Let's just say calling him stubborn is
an understatement. I don't need an apology, not any more. Back then -- I might have

liked one back then. I was angry for a long time -- at you, at my
father, at the system. At me, for being such a fool. Don't say that --
you were never a fool. let a convict talk me into leaving a secured
door unlocked, knowing that he was going to escape through it --
that's about as foolish as it gets.

But it's done now.

The storm passed and luckily we
weren't all washed away.

Figure 3: a) A story generated with the random model (4.29 coherence, 3.71 overall, 7 raters) b) A story generated with the simple
bigram lucene model (4.22 coherence, 4.44 overall, 9 raters). c) A story generated with the context bigram lucene model (3.0
coherence, 2.6 overall, 5 raters).

 The third example, in Figure 3c, is a story generated
using the context bigram model. This example basically
shows the same benefits and drawbacks as the simple
bigram model. Despite including the history of the user’s
story as additional information during the search, it seems
the simple field contributes the most dominant weight to
the result. It is not entirely clear why this is the case, but at
least some of the problem is related to the ad hoc term
boosting used to reduce the weight of terms in the history.

Evaluation
The examples presented in the previous section provide
some qualitative insight into how the different models
behave and what kinds of stories are produced with the
system. To make a qualitative comparison we designed a
set of experiments that try to assess several different areas
of performance. The design of the experiments was similar
to those performed in Swanson and Gordon (2008) with a
few notable exceptions. When a user began writing a story,
one of the five retrieval models was chosen randomly and
used for the entire story. When the user was finished with
their story they were asked to rate it on the following two
criteria using a five-point scale (1 low, 5 high):

Coherence: How much sense can you make out of the
story? Do individual sentences follow from each other

and does the story make sense as a whole.

Overall: What do you think of the story overall? Did
you have fun reading or writing it? Was there
anything particularly interesting about it?

Participants in this study consisted of 22 students and staff
working at the University of Southern California’s Institute
for Creative Technologies, recruited by email to use the
system over a period of 13 days. Using our web-based
interfaces, these users authored a total of 101 stories using
a randomly-selected retrieval model, and provided
coherence and overall ratings for 96 stories written by
other users. In all cases, the authors of these stories
remained anonymous to the users who rated them. The
results are summarized in figures 4 and 5.
 Although, as previously mentioned, much of the success
of a story is determined by the creativity of the author,
these results show that there are noticeable differences
between the models. In general, the random model
performs the worst on nearly all criteria, while the simple
bigram model performs among the best. One of the more
interesting results, however, is that despite the context
models being outperformed on coherence (and overall)
ratings by the simple bigram model, the authors deemed
the choices returned by the system among the best.
Another important measure of success for our system is the
length of the story, which can loosely indicate the ease and

Figure 4: Charts comparing the coherence and overall performance of the (R)andom, (S)imple, (SB)Simple Bigram, (C)ontext and
(CB)Context Bigram models with error bars representing 95% confidence. The ratings are compared across ratings from the authors
only (Author), the users excluding the author (User) and from everyone (Everyone).

1.5
2

2.5
3

3.5
4

4.5

R S SB C CB

Coherence

Author User Everyone

1.5
2

2.5
3

3.5
4

4.5

R S SB C CB

Overall

Author User Everyone

Model Coherence Overall Combined Avg. Choice Avg. Story Length
Random 2.93 ± 0.28 2.66 ± 0.24 2.79 ± 0.18 3.61 ± 0.58 10.43 ± 2.48
Simple 3.04 ± 0.28 3.16 ± 0.29 3.10 ± 0.22 3.00 ± 0.63 11.06 ± 1.85
Simple Bigram 3.66 ± 0.23 3.42 ± 0.30 3.54 ± 0.23 2.55 ± 0.53 14.39 ± 3.46
Context 3.05 ± 0.33 3.13 ± 0.35 3.09 ± 0.28 2.98 ± 0.41 11.89 ± 2.57
Context Bigram 3.08 ± 0.27 2.87 ± 0.27 2.98 ± 0.23 2.68 ± 0.56 10.87 ± 2.78
Figure 5: A comparison of several metrics across the models with 95% confidence intervals. Coherence and Overall are averaged
over all the ratings submitted by the users (including the authors). Combined is the average of all the Coherence and Overall ratings.
Avg. Choice is the average rank of the replacement when the user changes the default selection (given a value of zero). Avg. Story
Length is the average number of total sentences written by both human and computer.

enjoyment users have in writing their stories. Again the
random model performs the worst and the simple bigram
model performs the best. The role of context is less clear as
the simple context model produces the second longest
stories on average while the bigram context model is not
much better than the random model.

Discussion
Our results show that there are clear differences between
the models, however the conclusions that can be drawn are
not as decisive. We believed that including context into the
search criteria would have improved the quality of the
retrieved sentences regardless of our implementation
decisions. Unfortunately, the choice to use context is not as
simple as a binary decision to include or not include it. It
seems it is critically important how much context is
included in the search and the weight given to the terms
based on factors such as their location. The ability for
returned sentences to adhere to the people, states and
actions that have already been mentioned in the story is
vital to the success of our system. Although our
methodology for including context in the retrieval process
was not successful we believe that it is still an important
avenue to pursue. However, it is also equally important to
investigate more advanced adaptation procedures that
could also help modify an initially problematic sentence
into one that fits with the given narrative constraints.
 Although our system relies heavily on information
retrieval techniques, this work indirectly indicates that
simply adopting the best performing techniques from the
IR community may not yield the best results for narrative
story generation. Even if we had access to a retrieval
system that could find the most semantically similar
sentence in the corpus (or a much larger one) there are still
several issues that limit the value of these selections in this
domain. First, without any adaptation, these sentences (and
the ones that follow them) may be appropriately about
people doing and saying the right things, but many times
they would likely still fail on grammatical issues such as
agreement. Also, no matter how large the corpus, names,
dates, locations and auxiliary entities are likely to play an
even more important role than they would in traditional IR
system. However, the more relevant problem to narrative
generation is that a good story usually contains events that
follow a narrative progression, where events are chosen in
support of a developing plotline with an appropriate
amount of explication and twists. An ideal system should
not always blindly retrieve the most similar sentence from
the database, and further research is needed to determine
how to do this effectively.
 From a high-level view, our approach can be
characterized as a type of case-based reasoning system,
where new problems are solved by retrieving previously
solved problems and then adapting them to the current
situation (Riesbeck & Schank, 1989). While our approach
takes some inspiration from case-based reasoning, there are
still several aspects of our system that could benefit from

other core ideas of the case-based reasoning approach. For
example, we mentioned the importance of adaptation in
returning coherent sentences, but our system still lacks a
effective mechanism of transforming a weblog sentence
into one that seamlessly integrates into the user’s story.

Acknowledgements

The project or effort described here has been sponsored by
the U.S. Army Research, Development, and Engineering
Command (RDECOM). Statements and opinions expressed
do not necessarily reflect the position or the policy of the
United States Government, and no official endorsement
should be inferred.

References
Baldridge, J., and Morton, T. 2008. The opennlp

homepage. http://opennlp.sourceforge.net/index.html. 
Cheong, Y.-G., and Young, M. 2006. A computational

model of narrative generation for suspense. In AAAI
2006 Computational Aesthetic Workshop.

Finkel, J. R.; Grenager, T.; and Manning, C. 2005.
Incorporating non-local information into information
extraction systems by gibbs sampling. In Proceedings of
the 43rd Annual Meeting on Association for
Computational Linguistics, 363–370. Ann Arbor,
Michigan: Association for Computational Linguistics.

Gordon, A. S.; Cao, Q.; and Swanson, R. 2007. Automated
story capture from internet weblogs. In Proceedings of
the 4th international conference on Knowledge capture,
167–168. Whistler, BC, Canada: ACM.

Gospodnetic, O., and Hatcher, E. 2004. Lucene in Action.
Manning Publications.

Mueller, E. T. 2006. Modelling space and time in
narratives about restaurants. Lit Linguist Computing
fql014.

Riedl, M., and Len, C. 2008. Toward vignette-based story
generation for drama management systems. In
INTETAIN, Workshop on Integrating Technologies for
Interactive Stories. ACM Digital Library.

Riedl, M. O., and Young, R. M. 2004. An intent-driven
planner for multi-agent story generation. Autonomous
Agents and Multiagent Systems, International Joint
Conference on 1:186–193.

Riesbeck, C. K., and Schank, R. C. 1989. Inside Case-
Based Reasoning. L. Erlbaum Associates Inc. 1

Swanson, R., and Gordon, A. S. 2008. Say anything: A
massively collaborative open domain story writing
companion. In First International Conference on
Interactive Digital Storytelling. Erfurt, Germany: First
International Conference on Interactive Digital
Storytelling.

